Report of the Workshop on Intelligent Construction for Earthworks

ER09-02
April 14–16, 2009
Disclaimer Notice
The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. The opinions, findings and conclusions expressed in this publication are those of the authors and not necessarily those of the sponsors.

The sponsors assume no liability for the contents or use of the information contained in this document. This report does not constitute a standard, specification, or regulation.

The sponsors do not endorse products or manufacturers. Trademarks or manufacturers’ names appear in this report only because they are considered essential to the objective of the document.

Non-Discrimination Statement
Iowa State University does not discriminate on the basis of race, color, age, religion, national origin, sexual orientation, gender identity, sex, marital status, disability, or status as a U.S. veteran. Inquiries can be directed to the Director of Equal Opportunity and Diversity, (515) 294-7612.

Federal and state laws prohibit employment and/or public accommodation discrimination on the basis of age, color, creed, disability, gender identity, national origin, pregnancy, race, religion, sex, sexual orientation or veteran's status. If you believe you have been discriminated against, please contact the Iowa Civil Rights Commission at 800-457-4416 or Iowa Department of Transportation's affirmative action officer. If you need accommodations because of a disability to access the Iowa Department of Transportation's services, contact the agency's affirmative action officer at 800-262-0003.
Report of the
Workshop on Intelligent Construction for Earthworks

April 14–16, 2009
Sheraton West Des Moines Hotel, West Des Moines, Iowa

David J. White, Ph.D.
Associate Professor of Civil Engineering
Earthworks Engineering Research Center Director
2711 South Loop Drive, Suite 4700
Ames, Iowa 50010
515-294-1463
djwhite@iastate.edu

Pavana KR. Vennapusa, Ph.D.
Research Associate
Earthworks Engineering Research Center
2711 South Loop Drive, Suite 4700
Ames, Iowa 50010
515-294-2395
pavanv@iastate.edu

Sponsored by the Iowa Department of Transportation
and the Earthworks Engineering Research Center at Iowa State University
Table of Contents

Preface ... vii

Acknowledgments ... ix

Abbreviations .. xi

Executive Summary ... xiii

Introduction .. 1
 The Challenge ... 1
 Workshop Objectives and Agenda ... 1

Report Organization ... 1

Background ... 2
 Overview of Intelligent Compaction and Mechanistic Based QA/QC............................. 2
 Overview of Automated Machine Guidance ... 3
 Summary of 2008 Workshop .. 5

Guidelines for IC Developmental Specifications .. 5
 Draft Key Attributes of IC Specifications ... 5
 IC Specifications and Related Literature ... 7
 IC Specification Options ... 8

Presentations .. 11

Welcome and Workshop Mission—Sandra Larson .. 13

2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes
—David White ... 15

Joint Rapid Airfield Construction (JRAC): U.S. Military’s New Approach to
Contingency Airfield Construction—Gary Anderton .. 23

IC Case Histories for Soil, Aggregate, and HMA—David White, Pavana Vennapusa,
Rachel Goldsmith, and Luke Johanson ... 27

Mn/DOT Experience with LWD and IC Implementation—Rebecca Embacher and
Tim Andersen ... 39

Iowa Real-Time Network (Iowa RTN)—Mike Jackson ... 47

GPS Technology in Planning, Design and Construction Delivery—Jeff Hannon; GPS
Automatic Grade Control Systems, Engineering Distance Education—Charles Jahren;
NCHRP 10-77—David White ... 51

Participating State DOT Briefings—David Jared and Brett Dening 57

Industry/Equipment Manufacturer Overviews .. 61
 Intelligent Technologies Creating Intelligent Surfaces—Corey Johnson, Bentley 61
 Overview of BOMAG IC Technology—Dave Dennison, BOMAG Americas 63
 Connected Worksite Solutions—Terry Rasmussen, Caterpillar 75
 Dynapac Compaction Analyzer and Optimizer—Gert Hansson, Dynapac 77
<table>
<thead>
<tr>
<th>Topic</th>
<th>Facilitators/Recorders</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligent Compaction for Soils and Asphalt</td>
<td>Stan Rakowski, Sakai</td>
<td>79</td>
</tr>
<tr>
<td>Project Planning Using: GIS, GPS and RFID</td>
<td>Kelly Miller, Trimble</td>
<td>87</td>
</tr>
<tr>
<td>Trimble, Construction Technology and Compaction Control Systems</td>
<td>Jeroen Snoeck, Trimble</td>
<td>90</td>
</tr>
<tr>
<td>State DOT Briefings</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>Breakout Sessions</td>
<td></td>
<td>102</td>
</tr>
<tr>
<td>Intelligent Compaction for Soils, Aggregate, and HMA 1</td>
<td>Paul Weigand (Facilitator), Pavana Vennapusa (Recorder)</td>
<td>103</td>
</tr>
<tr>
<td>Prioritized Ranking of 2008 Workshop Road Map Topic Areas</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Proposed Action Plans/Schedule/Responsibilities</td>
<td></td>
<td>103</td>
</tr>
<tr>
<td>Intelligent Compaction for Soils, Aggregate, and HMA 2</td>
<td>Ed Engle (Facilitator), Pavana Vennapusa (Recorder)</td>
<td>104</td>
</tr>
<tr>
<td>Prioritized Ranking of 2008 Workshop Road Map Topic Areas</td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>Proposed Action Plans/Schedule/Responsibilities</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>Automated Machine Guidance 1</td>
<td>Charles Jahre and John Hannon (Facilitators), Heath Gieselman (Recorder)</td>
<td>106</td>
</tr>
<tr>
<td>Knowledge Gaps</td>
<td></td>
<td>106</td>
</tr>
<tr>
<td>Education/Training</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>Specifications/Standards</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>General</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Automated Machine Guidance 2</td>
<td>Charles Jahre and John Hannon (Facilitators), Heath Gieselman (Recorder)</td>
<td>108</td>
</tr>
<tr>
<td>Knowledge Gaps</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Education/Training</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Specifications/Standards</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>Intelligent Compaction Specifications and Performance-Based Specifications 1</td>
<td>Tom Cackler and David White (Facilitators), Caleb Douglas (Recorder)</td>
<td>110</td>
</tr>
<tr>
<td>Challenges</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Goals</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>110</td>
</tr>
<tr>
<td>Review of Developmental Specifications</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Intelligent Compaction Specifications and Performance-Based Specifications 2</td>
<td>Tom Cackler and David White (Facilitators), Caleb Douglas (Recorder)</td>
<td>111</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Review of Developmental Specifications</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>Facilitator Report—Summary</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Intelligent Compaction for Soils, Aggregate, and HMA</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Prioritized IC Road Map Elements and Action Items</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td>Automated Machine Guidance</td>
<td></td>
<td>114</td>
</tr>
</tbody>
</table>
Preface

This document summarizes the discussion and findings of a workshop on intelligent technologies for earthwork construction held in West Des Moines, Iowa, on April 14–16, 2009. This meeting follows a similar workshop conducted in 2008. The objective of the meeting was to provide a focused discussion on identifying research and implementation needs/strategies to advance intelligent compaction and automated machine guidance technologies. Technical presentations, interactive working breakout sessions, and a panel discussion comprised the workshop. About 100 attendees representing state departments of transportation, Federal Highway Administration, contractors, equipment manufacturers, and researchers participated in the workshop.
Acknowledgments

The Earthworks Engineering Research Center (EERC) at Iowa State University of Science and Technology gratefully acknowledges the Iowa Department of Transportation (Iowa DOT) for sponsoring this workshop. Travel support for most state department of transportation (DOT) participants and support for the development of this report were made possible by the Iowa DOT.

The EERC also sincerely thanks the following individuals for their support of this workshop.

Planning Committee
Sandra Larson (Chair), Iowa Department of Transportation
John Adam, Iowa Department of Transportation
Tom Cackler, National Concrete Pavement Technology Center, Iowa State University
Carol Culver, Iowa Department of Transportation
Mark Dunn, Iowa Department of Transportation
Ed Engle, Iowa Department of Transportation
Steve Megivern, Iowa Department of Transportation
Sharon Prochnow, Iowa State University
Lisa Rold, Federal Highway Administration, Iowa Division
John Smythe, Iowa Department of Transportation
David White, Earthworks Engineering Research Center, Iowa State University

Workshop Presenters and Panel Discussion Participants
Sandra Larson (Chair), Iowa Department of Transportation
John Adam, Iowa Department of Transportation
Michael Adams, Federal Highway Administration
Tim Anderson, Minnesota Department of Transportation
Gary Anderton, U.S. Army Engineer Research and Development Center
Sesh Commuri, University of Oklahoma
Chris Connelly, BOMAG Americas
Brett Dening, New York Department of Transportation
Rebecca Embacher, Minnesota Department of Transportation
Dick Endres, Michigan Department of Transportation
Rachel Goldsmith, Earthworks Engineering Research Center, Iowa State University
Jeff Hannon, University of Southern Mississippi
Dean Herbst, Iowa Department of Transportation
Mike Jackson, Iowa Department of Transportation
Charles Jahren, Iowa State University
Luke Johanson, Earthworks Engineering Research Center, Iowa State University
Bill Kramer, Illinois Department of Transportation
Terry Rasmussen, Caterpillar
Adam Ross, Kentucky Department of Transportation
Zhiming Si, Texas Department of Transportation
Rob Sullivan, Cornell University
Tudor Van Hampton, Engineering News Record
Pavana Vennapusa, Earthworks Engineering Research Center, Iowa State University
David White, Earthworks Engineering Research Center, Iowa State University
Musharraf Zaman, University of Oklahoma

Breakout Session Facilitators and Recorders
Tom Cackler, National Concrete Pavement Technology Center, Iowa State University
Caleb Douglas, Iowa State University
Ed Engle, Iowa Department of Transportation
Heath Gieselman, Earthworks Engineering Research Center, Iowa State University
John Hannon, University of Southern Mississippi
Charles Jahren, Iowa State University
Pavana Vennapusa, Earthworks Engineering Research Center, Iowa State University
David White, Earthworks Engineering Research Center, Iowa State University
Paul Wiegand, National Concrete Pavement Technology Center, Iowa State University

Workshop Moderators
Tom Cackler, National Concrete Pavement Technology Center, Iowa State University
Sandra Larson, Iowa Department of Transportation
Lisa Rold, Federal Highway Administration, Iowa Division
Tudor Van Hampton, Engineering News Record
Abbreviations

AGC = Associated General Contractors
AMG = automated machine guidance
APAI = Asphalt Paving Industry of Iowa
CBR = California bearing ratio
CCV = Sakai compaction control value; Caterpillar compaction value
CIV = Clegg impact value
CMV = compaction meter value
DCP = dynamic cone penetrometer
DOT = Department of Transportation
DTM = digital terrain model
EED = electronic engineering data
E_{FWD} = falling weight deflectometer elastic modulus
E_{LWD} = light weight deflectometer elastic modulus
E_{PLT} = plate load test elastic modulus
E_{SSG} = soil stiffness gauge elastic modulus
E_{vib} = BOMAG roller vibration modulus
FHWA = Federal Highway Administration
FWD = falling weight deflectometer
GPS = global positioning system
HMA = hot mix asphalt
IC = intelligent compaction
K = hydraulic conductivity
K_s = case/ammann roller stiffness
LWD = light weight deflectometer
MDP = Caterpillar machine drive power
NCHRP = National Cooperative Highway Research Program
QA = quality assurance
QC = quality control
RMV = resonant meter values
TDM = theoretical maximum density
Executive Summary

The objectives of this workshop were to update the strategies identified during the 2008 workshop; provide a collaborative exchange of ideas and experiences; share research results; increase participants’ knowledge; develop research, education, and implementation initiatives for intelligent compaction (IC) and automated machine guidance (AMG) technologies; and develop strategies to move forward.

The 2½ day workshop was organized as follows:

- Day 1: Review of 2008 workshop proceedings, technical presentations on IC and AMG technologies, and participating state department of transportation (DOT) briefings.
- Day 2: Industry/equipment manufacturer presentations and breakout interactive sessions on three topic areas.
- Day 3: Breakout session summary reporting and panel discussion involving state DOT, contractor, and industry representatives.

The results of the breakout sessions on day 2 were analyzed to identify the priorities for advancement in each of the three topic areas. Key issues for each topic were prioritized by reviewing the recorder’s notes in detail, finding common topics among sessions, and summarizing the participant votes. The top 10 research and implementation needs are listed in Table 3 from the report, replicated below.

Table 3. Prioritized IC technology research/implementation needs

<table>
<thead>
<tr>
<th>Prioritized Top 10 IC Technology Research/Implementation Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intelligent Compaction Specifications/Guidance (41)</td>
</tr>
<tr>
<td>2. Intelligent Compaction and In Situ Correlations (25)</td>
</tr>
<tr>
<td>3. In Situ Testing Advancements and New Mechanistic-Based QC/QA (20)</td>
</tr>
<tr>
<td>4. Understanding Impact of Non-Uniformity of Performance (16)</td>
</tr>
<tr>
<td>5. Data Management and Analysis (16)</td>
</tr>
<tr>
<td>6. Project Scale Demonstration and Case Histories (13)</td>
</tr>
<tr>
<td>7. Understanding Roller Measurement Influence Depth (13)</td>
</tr>
<tr>
<td>8. Intelligent Compaction Technology Advancements and Innovations (9)</td>
</tr>
<tr>
<td>9. Education Program/Certification Program (8)</td>
</tr>
<tr>
<td>10. Intelligent Compaction Research Database (8)</td>
</tr>
</tbody>
</table>

The panel discussion on day 3 was mainly centered on the following five key topics:

1. Action items (state DOT, manufacturer, and contractor perspectives)
2. Additional research/development needs for manufacturer
3. Challenges
4. Strategies (state DOT perspective)
5. Education/Training
A summary of key outcomes from the panel discussion is presented in Table 6 from the report, replicated below.

Table 6. Summary of panel discussion

<table>
<thead>
<tr>
<th>Key Outcomes from Panel Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Need “champions” to create opportunities for implementation—using the technology for QC by contractor and performing independent QA by DOT is a good strategy to further implementation.</td>
</tr>
<tr>
<td>2. Need demonstration/pilot projects to improve confidence, create evidence that it reduces costs/improves efficiency to contractors, create training opportunities, and implement pilot specifications.</td>
</tr>
<tr>
<td>3. Need more research on identifying “gold standard” QA method for correlations with IC measurements.</td>
</tr>
<tr>
<td>4. Need more refinement in the technologies with respect to more user-friendly on-board interfaces for data analysis and visualization and retrofitting capabilities.</td>
</tr>
</tbody>
</table>

This workshop provided a platform to exchange ideas between researchers, practitioners, and policy makers and to provide input on current state of the practice/technology. Some important outcomes from the breakout session and panel discussions are a prioritized IC road map and AMG road map with action items to move forward. A summary of key action items derived from these discussions is presented in Table 9 from the report, replicated below. Although these road maps are a good starting point, effective and accelerated implementation of these technologies will require “champions” to create opportunities.

Table 9. Action items for advancing IC road map and AMG road map

<table>
<thead>
<tr>
<th>Action Items for Advancing IC Road Map and AMG Road Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop six case histories (technical briefs) to demonstrate the benefits of the technologies</td>
</tr>
<tr>
<td>2. Conduct six webinars to facilitate training and technology transfer</td>
</tr>
<tr>
<td>3. Create a Specifications Technical Working Group to coordinate efforts</td>
</tr>
<tr>
<td>4. Regularly update the Earthworks Engineering Research Center web site (www.eerc.iastate.edu)</td>
</tr>
<tr>
<td>5. Explore the possibility of conducting a National Highway Institute course on IC and AMG technologies</td>
</tr>
<tr>
<td>6. Identify current research gaps, develop problem statements for needed research, and identify key research partners</td>
</tr>
</tbody>
</table>
Introduction

The Challenge

Some of the key obstacles to effectively implement new technologies in earthworks and paving construction include lack of knowledge in technical aspects, well-documented case histories demonstrating the benefits, proper education/training materials, and widely accepted specifications and standards. Improvements to earthwork construction operations using new and innovative technologies, such as intelligent compaction (IC) and automated machine guidance (AMG), can potentially offer a significant return on capital investments. IC technology integrated with global positioning systems (GPS) provides 100 percent coverage of the conditions of compacted earth and hot mix asphalt (HMA) materials. AMG technology integrated with GPS links sophisticated three-dimensional (3D) design software with construction equipment and can help direct machine operations with a high level of precision. Using IC and AMG technologies shows significant potential for enhancing the abilities of state/federal agencies and contractors to construct better, faster, safer, and cheaper transportation infrastructure projects.

Workshop Objectives and Agenda

The objectives of this workshop were to update the strategies identified during the 2008 workshop; provide a collaborative exchange of ideas and experiences; share research results; increase participants’ knowledge; develop research, education, and implementation initiatives for IC and AMG technologies; and develop strategies to move forward.

The workshop was held for 2½ days and was attended by about 100 participants from 16 state departments of transportation (DOTs), 10 industry/manufacturing companies, 7 contractor companies, 4 universities, the Federal Highway Administration (FHWA), the US Army Corps of Engineers, the Associated General Contractors of Iowa (AGC), and the Asphalt Paving Association of Iowa (APAI). The first day involved a review of the 2008 workshop proceedings, technical presentations on IC and AMG technologies, and briefings from participating DOTs. The second day involved industry/equipment manufacturer presentations and breakout interactive sessions on three topic areas. The third day involved breakout session summary reporting and a panel discussion involving state department of transportation (DOT), contractor, and industry representatives.

Report Organization

This report contains technical presentation slides, a summary of state DOT briefings, notes and facilitator summary reports from the breakout sessions, and a summary of the panel discussion. The complete workshop agenda is included in Appendix A, and a list of attendees is provided in Appendix B. As background information, an overview of IC and AMG technologies, a brief review of the 2008 workshop proceedings, and some guidelines for developing IC specifications (provided to participants) are provided. Appendix C is the Iowa DOT developmental specification that was provided to participants. Photos of the workshop and comments evaluating the workshop are provided in Appendices D and E, respectively. A brochure on the Geotechnical Mobile Lab is provided in Appendix F.

Background

Overview of Intelligent Compaction and Mechanistic-Based QA/QC

IC technologies consist of machine-integrated sensors and control systems that provide a record of machine-ground interaction. With feedback control and adjustment of vibration amplitude and/or frequency during the compaction process, the technology is referred to as intelligent compaction. Without the feedback control system, the technology is commonly referred to as continuous compaction control (CCC). The measurements obtained from the roller provide an indication of ground stiffness/strength characteristics and, to some extent, degree of compaction. Most of the IC/CCC technologies are vibratory-based systems developed in Europe and Japan and have been used for more than 20 years.2, 3, 4, 5 The vibratory-based technologies have been applied to self-propelled, single smooth drum and padfoot rollers and double drum asphalt compactors. A static-based measurement technology based on machine drive power (MDP) has been recently developed for padfoot and smooth drum rollers.6 More recently, an artificial neural network (ANN)–based measurement system has been developed for use on asphalt rollers.7 Over the years, the technologies evolved to integrate roller measurements with GPS measurements for real-time onboard mapping and visualization capabilities. There are at least six IC/CCC systems/parameters that are summarized in the 2008 workshop report.1 Technical presentations from the workshop with some details of these technologies are presented later in this report.

Since 2003, transportation agencies and contractors in the US have been investigating applications of IC/CCC on earthwork and HMA construction projects. Figure 1 shows seven states with IC research/demonstration projects in the US. Table 1 provides a summary of IC research/field demonstration projects in the US. A review of this project list shows limited studies8, 9 (sponsored by Minnesota DOT) that documented results from pilot projects where IC was specified in the project specifications.

As an outcome of the 2008 workshop, the need for correlations between IC/CCC measurement values and traditionally used point measurements (e.g., relative compaction, modulus, strength, etc.) was identified as the top research need. For earth materials, using relative compaction (i.e., density) and moisture content for quality assurance (QA) and quality control (QC) are common. Similarly, a density measurement (to determine air void contents) is also a common QA/QC measurement for HMA. IC/CCC measurements are generally better correlated with mechanistic stiffness/strength measurements than with relative compaction. Correlating IC/CCC measurements to mechanistic measurements has the advantage of potentially verifying pavement design parameters. Use of in situ QA/QC methods that provide mechanistic measurements (e.g., light weight deflectometer [LWD], falling weight deflectometer [FWD], dynamic cone penetrometer [DCP]) are increasingly being considered by state and federal agencies. More details on mechanistic QA/QC testing can be found elsewhere.

Overview of Automated Machine Guidance

A research project was recently initiated by the National Cooperative Highway Research Program (NCHRP 10-77) to help accelerate the implementation of AMG in the transportation industry. Application of AMG technology to transportation construction projects eliminates guesswork, reduces the need for skilled labor, and improves safety at construction sites. AMG has the potential to improve the efficiency of contractors and provide significant time and cost savings. Some key obstacles that are hindering accelerated implementation of AMG technologies include (a) lack of a standardized process for

Table 1. Intelligent compaction research/demonstration projects to date in the US

<table>
<thead>
<tr>
<th>Year</th>
<th>Project Title</th>
<th>Sponsors</th>
<th>Performing Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Exploring Vibration-Based Intelligent Soil Compaction</td>
<td>Oklahoma DOT, FHWA</td>
<td>University of Oklahoma</td>
</tr>
<tr>
<td>2003</td>
<td>Intelligent Compaction: Overview and Research Needs</td>
<td>FHWA</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>2004</td>
<td>Field Evaluation of Compaction Monitoring Technology: Phase 1</td>
<td>Iowa DOT, FHWA, Caterpillar, Inc.</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>2005</td>
<td>Continuous Compaction Control MnROAD Demonstration</td>
<td>Mn/DOT</td>
<td>CNA Consulting Engineers</td>
</tr>
<tr>
<td>2006</td>
<td>New Technologies and Approaches to Controlling the Quality of Flexible Pavement Construction</td>
<td>TxDOT, FHWA</td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>2006</td>
<td>Field Evaluation of Compaction Monitoring Technology, Phase 2</td>
<td>Iowa DOT, FHWA</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>2006</td>
<td>Advanced Compaction Quality Control</td>
<td>Indiana DOT, FHWA</td>
<td>Purdue University</td>
</tr>
<tr>
<td>2006</td>
<td>Intelligent Compaction and In Situ Testing at Mn/DOT THS3</td>
<td>Mn/DOT</td>
<td>CAN Consulting Engineers</td>
</tr>
<tr>
<td>2007</td>
<td>CAREER: Geo Works: Multidisciplinary Design Studio Fostering Innovation and Invention in Geo-Construction through Research, Development, and Education</td>
<td>National Science Foundation</td>
<td>Colorado School of Mines</td>
</tr>
<tr>
<td>2007†</td>
<td>Field Validation of Intelligent Compaction Monitoring Technology for Unbound Materials</td>
<td>Mn/DOT, FHWA</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>2007</td>
<td>Preliminary Field Investigation of Intelligent Compaction of Hot-Mix Asphalt</td>
<td>Virginia Department of Transportation</td>
<td>Virginia Transportation Research Council</td>
</tr>
<tr>
<td>2008</td>
<td>Intelligent Compaction Implementation: Research Assessment</td>
<td>Mn/DOT, FHWA</td>
<td>University of Minnesota</td>
</tr>
<tr>
<td>2008</td>
<td>Field Evaluation of CS-563 and CS-683 Vibratory Smooth Drum Rollers</td>
<td>Caterpillar, Inc.</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>2008</td>
<td>Demonstration of Intelligent Compaction Control for Embankment Construction in Kansas</td>
<td>Kansas DOT, FHWA</td>
<td>Kansas State University</td>
</tr>
<tr>
<td>2009†</td>
<td>Implementation of Intelligent Compaction Performance-Based Specifications in Minnesota</td>
<td>Mn/DOT</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>2009</td>
<td>Intelligent Soil Compaction Systems</td>
<td>NCHRP</td>
<td>Colorado School of Mines, Iowa State University</td>
</tr>
<tr>
<td>Active</td>
<td>Development of Soil Stiffness Measuring Device for Pad Foot Roller Compactor</td>
<td>Colorado DOT, Mn/DOT, FHWA</td>
<td>Colorado School of Mines</td>
</tr>
<tr>
<td>Active</td>
<td>Intelligent Asphalt Compaction Analyzer</td>
<td>Oklahoma DOT, FHWA</td>
<td>University of Oklahoma</td>
</tr>
<tr>
<td>Active</td>
<td>Investigation of Intelligent Compaction Technology</td>
<td>DelDOT</td>
<td>University of Delaware</td>
</tr>
<tr>
<td>Active</td>
<td>Intelligent Compaction for Evaluation of Geogrid-Reinforced Base Material</td>
<td>Tensar International Corp.</td>
<td>Iowa State University</td>
</tr>
<tr>
<td>Active</td>
<td>Accelerated Implementation of Intelligent Compaction Technology for Embankment Subgrade Soils, Aggregate Base, and Asphalt Pavement Materials</td>
<td>FHWA Pooled Fund Study</td>
<td>The Transtec Group, Inc., Iowa State University</td>
</tr>
<tr>
<td>Active†</td>
<td>Iowa DOT Intelligent Compaction Research and Implementation</td>
<td>Iowa DOT</td>
<td>Iowa State University</td>
</tr>
</tbody>
</table>

*Projects with IC specification implementation on pilot projects
development and transfer of 3D electronic files, (b) a general lack of knowledge in technical aspects, (c) legal barriers, and (d) lack of documented case studies demonstrating the benefits of the AMG technology.

A few state DOTs (e.g., Colorado, California, Iowa, Minnesota, New York, and Wisconsin) have developed specifications to implement AMG on transportation construction projects. As part of the workshop breakout sessions, the groups were asked to develop a framework to move AMG technology forward into the mainstream of highway construction. As an example, a copy of the Iowa DOT developmental specifications (see Appendix C) was provided for the workshop participants. Discussion and results from the breakout sessions are provided later in this report.

Summary of the 2008 Workshop

One of the key outcomes from the 2008 workshop was that a follow-up workshop was highly encouraged to continue identifying opportunities to advance applications of new technologies. Approximately 100 participants, with representatives from several state DOTs, FHWA, industry/manufacturers, contractors, and universities, attended the 2008 workshop. The workshop involved several technical presentations, nine breakout sessions covering three topic areas (“IC for soils and Aggregate,” “IC for HMA,” and “Implementation Strategies”), a panel discussion, and a group exercise to identify implementation strategies. The workshop proceedings summarize the workshop events and outcomes (see Figure 2). Some of the significant outcomes of the 2008 workshop included identifying (a) the top 10 IC technology research needs, (b) where we are and where we are going, and (c) strategies for moving forward. The workshop provided an excellent platform for collaboratively exchanging ideas and taking initiative to accelerate implementation of IC technologies. The proceedings provided a road map for implementation that identified key research and training focal areas. The road map was evaluated as part of the 2009 workshop and is discussed later.

Guidelines for IC Developmental Specifications

Participants were given a handout with key attributes of IC specifications, a summary comparing current IC specifications, a list of IC specifications-related literature, and five possible specification options (including options for performance specifications). These documents are discussed later in this report. A key outcome of the discussions was a revised key attributes list for IC specifications.

Draft Key Attributes of IC Specifications

The following are considered key attributes of IC specifications. Although current IC specifications (see Table 1) have common language for many of these attributes, the largest differences exist with attribute item number 10.

Figure 2. Report of the 2008 workshop, photos, and some key outcomes

1. Descriptions of the rollers and configurations
2. Guidelines for roller operations (speed, vibration frequency, vibration amplitude, and track overlap)
3. Records to be reported (time of measurement, roller operations/mode, soil type, moisture content, layer thickness, etc.)
4. Repeatability and reproducibility measurements for IC measurement values (IC-MVs)
5. Ground conditions (smoothness, levelness, isolated soft/wet spots)
6. Calibration procedures for rollers and selection of calibration areas
7. Simple linear regression analysis between IC-MVs and point measurements
8. Number and location of QC and QA tests
9. Operator training
10. Acceptance procedures/corrective actions based on achievement of minimum MV target values (MV-TVs) and associated variability.
IC Specifications and Related Literature

I. Report of the Workshop on Intelligent Construction for Earthworks

IC Specification Options

Table 2 summarizes IC specifications.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Target IC-MV</th>
<th>Acceptance Criteria</th>
<th>QA/QC Test Frequencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSMGE (2005)</td>
<td>MV-TV = MV at 1.05% QA-TV from calibration</td>
<td>Average MV ≥ MV-TV
If minimum MV ≥ MV at 0.95 x QA-TV, MV-COV shall be ≤ 20%
Minimum MV for a measuring pass shall not be ≤ MV at 0.95 x QA-TV for a maximum length of 10% of track length
Minimum MV for a measuring pass shall not be < 80% of 0.95 x QA-TV
Maximum MV ≤ 150% of MV at 0.95 QA-TV</td>
<td>—</td>
</tr>
<tr>
<td>Mn/DOT (2007)</td>
<td>IC-TV = 90% of IC-MVs within 90%-130% of a trial MV-TV at point of no significant increase in compaction*</td>
<td>MV for 90% of area within 90% to 130% of MV-TV
Localized areas IC < 80% of MV-TW reworked until MV ≥ 90% of MV-TV</td>
<td>1 per 300 m for the entire width of embankment</td>
</tr>
</tbody>
</table>

*IC-TV is established using an iterative method by grouping the calibration MV data into distribution limits (i.e., >130%, 90%-130%, <80% of MV-TV) based on a trial MV-TV. If a significant portion of the grade is more than 20% in excess of the selected MV-TV, a new calibration strip may be needed.

Option 1: Roller-based QC with pre-selected MV-TVs

For this specification option, an appropriate MV-TV is pre-selected based on documented case histories/literature, a database of information from local projects, laboratory tests, calibration tests on test beds of known engineering properties, a mechanical apparatus simulating a range of soil conditions, and/or numerical modeling. The contractor uses the preselected MV-TV primarily for QC. QA is evaluated using a combination of IC-MVs and in situ QA point measurements. This option will become more beneficial as experience and data become available through implementing IC in earthwork projects.

Option 2: IC-MV maps to target locations for QA point measurements

IC-MV geo-referenced maps are used in this specification option to identify “weak” areas to focus on QA point measurements. Proper QC measures (e.g., controlling moisture content, lift thickness, etc.) should be followed during compaction. The contractor should provide the IC-MV map to the field inspector for selection of QA test locations. Judgment is used to
select the number of tests and test locations. Acceptance is based on achievement of target QA point measurement values in roller-identified “weak” areas. If in situ test QA criteria are not met, additional compaction passes should be performed and/or QC operations should be adjusted (e.g., moisture, lift thickness, etc.) and retested for QA.

Option 3: MV-TVs from compaction curves to target locations for QA point measurements

This specification option evaluates the change in IC-MVs with successive passes as an indicator of compaction quality. As the number of roller passes increases, the change in MV between passes normally decreases. A production area is monitored by evaluating the percent change in IC-MVs between successive passes. Once the percent change of ≤ 5% over 90% (these percentages can be adjusted based on judgment and field experience) of the production area between roller passes is achieved, the production area is considered fully compacted. This option is more effective for controlled field conditions with relatively uniform materials, moisture content, and lift thickness and serves as a QC process control for the roller operator. The numbers of tests and test locations are selected based on judgment. Acceptance is similar to Option 1, in that QA testing is targeted in areas with relatively low IC-MVs.

Option 4: Calibration of IC-MVs to QA point measurements

This specification option requires calibration of IC-MVs to QA point measurements from a representative calibration test strip prior to performing production QA testing. The MV-TV is established from project QA criteria through regression analysis and applying prediction intervals. For modulus/strength measurements, simple linear regression analysis is generally suitable, while for correlation to dry unit weight/relative compaction measurements, multiple regression analyses, including moisture content as a variable, may be needed. If underlying layer support conditions are heterogeneous, relationships are likely improved by performing multiple regression analyses with IC-MV or using point measurement data from underlying layers. Acceptance of the production area is based on achievement of MV-TV at the selected prediction interval (80% is suggested) and achievement of target QA point measurement values in the areas with MVs < MV-TV.

Option 5: Performance-based QA specification with incentive-based payment

One of the shortcomings of the existing IC specifications might be that the acceptance criteria (specifically the target limits) are dependent on specific IC technology. This specification option, although it requires a more rigorous statistical analysis framework, could provide a consistent means for specifying acceptance criteria. The acceptance criteria for this option are (a) the overall level of critical soil engineering properties over an area achieves the MV-TV and (b) the variability of critical soil engineering properties over an area is no more than some specified maximal amount (e.g., COV%). These acceptance criteria are established based on regression analysis from calibration, applying prediction intervals, accounting for the repeatability and reproducibility errors associated with IC-MVs and point measurements, and a selected probability or risk level in acceptance decisions. This approach could provide a link to performance-based specifications and a quantitative mechanism to define incentive-based payment.

Figure 3 summarizes and provides a framework for four of the five different IC earthwork specification options.
Figure 3. Framework for different IC earthwork specification options
The following is a list of the presentations delivered at the workshop. The slides follow.

1. Welcome and Workshop Mission—Sandra Larson
2. 2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes
 —David White
5. Mn/DOT’s Experience with LWD and IC Implementation—Rebecca Embacher and Tim Andersen
6. Iowa Real-Time Network (Iowa RTN)—Mike Jackson
7. GPS Technology in Planning, Design, and Construction Delivery—Jeff Hannon; GPS Automatic Grade Control Systems, Engineering Distance Education—Charles Jahren; NCHRP 10-77—David White
8. Participating State DOT Briefings—David Jared and Brett Dening
9. Industry/Equipment Manufacturer Overviews
 – Intelligent Technologies Creating Intelligent Surfaces—Corey Johnson, Bentley
 – Overview of BOMAG IC Technology—Dave Dennison, BOMAG
 – Connected Worksite Solutions—Terry Rasmussen, Caterpillar
 – Dynapac Compaction Analyzer and Optimizer—Dynapac
 – Intelligent Compaction for Soils and Asphalt—Stan Rakowski, Sakai
 – Project Planning Using: GIS, GPS and RFID—Kelly Miller, Trimble
 Trimble, Construction Technology and Compaction Control Systems—Jeroen Snoeck, Trimble
Welcome and Workshop Mission

Sandra Larson

Workshop Mission

- ...provides an opportunity for participants to exchange ideas and experiences in using intelligent construction technologies.
- ...goal is to increase participants’ knowledge and identify strategies to advance use of these tools to provide verifiable results that are appropriate for both contractor quality control and owner acceptance decisions.

Attendance #’s

- State DOTs (16 states)
- Industry/Manufacturing (10 companies)
- Contractors (7 companies)
- FHWA, NCHRP, US Army Corps of Engineers, Iowa AGC, APAI, ENR Magazine
- Consultants (2 companies)
- International (Japan)
- Academics (4 universities)
- ~100 attendees

Why are we here?

John Adam, P.E.
Iowa Department of Transportation

Automated Machine Guidance - Its Status at the Iowa DOT

- Primary Mission: Use in 95% of earth-moving projects as standard operating procedure.
- Developmental Specification being used.
- Electronic files made available with bid packages.
- Files now cover 90% of grading surfaces (work toward 100% coverage is on-going).
- Checks & balances: Traditional survey & hubs.
- Current & future goal: Continuous improvement in cooperation with contractors and researchers (AGC and Iowa State University - CTRE)
Intelligent Compaction Initiative

- **Goal:** To successfully implement intelligent compaction technologies through research and training that leads to improved road building quality, efficiency, and cost.
- **Primary Tasks**
 - Detailed demonstration projects (3 in 2009) for soil and HMA
 - Develop framework for IC database
 - Create pilot Developmental Specification and let project(s) (2010)
 - Create training program for Iowa DOT and contractor
- **Collaborative effort with industry and EERC**

Intelligent Paving Systems

- "Stingless Portland Cement Concrete Paving," Iowa DOT Project TR-460
2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes

David White

IOWA STATE UNIVERSITY
Civil, Construction & Environmental Engineering

2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes

David J. White, Ph.D.
Associate Professor
Director, EERC
April 14, 2009

Dream it, Design it, Build it. www.coeec.engineering.iastate.edu

Hard Work, Fun, New Partnership...

Workshop Overview

- 2.5 day event in Des Moines, IA in April 2008
- ~100 participants (State DOTs, FHWA, Contractors, Equipment Manufacturers, Academics)
- $550 provided for State DOTs
- Technical Session, Breakout Working Sessions, Panel Discussion, Group Exercise
- Next Meeting Planned for April 14-16, 2009

http://www.cte.iastate.edu/reports/intelligent-compaction-workshop.pdf

Workshop Objectives and Vision

- Provide a collaborative exchange of ideas for developing research and educational initiatives that accelerate implementation of intelligent compaction technologies
- Create a roadmap for implementation that identifies several key research and training focal areas
- How did we do it?

Day 1 - Technical Presentations

1. Intelligent Compaction for Soils and Aggregate – Dr. David J. White
2. Intelligent Compaction (IC) for Hot Mix Asphalt (HMA) – Lee Gallivan
3. Automated Technologies in Construction – Dan Steege
4. Earthworks Engineering Research Center – Dr. David J. White
5. Intelligent Compaction at MnDOT – Glenn Engstrom, Craig Collins, and Art Belland
6. European Experience with IC – Franconia Chaigne
7. Intelligent Compaction for Soil and Asphalt – Dean Potts
8. Asphalt Manager intelligent Compaction – Chris Connolly
9. Intelligent Compaction for Soils & HMA – Stan Kowalski
10. Evaluation of Highway Subgrade Strength with Acceleration Wave of the Vibration Roller – Stan Kowalski
11. Intelligent Compaction – GPS Based Compaction Control – Kirby Carpenter
12. Intelligent Compaction – Shail Maloof
13. Intelligent Compaction: Where we are at and where we need to be – Brett Stasnor

Technology – What is IC?

Bomag: Elongation
Case/Ammann: k
Caterpillar: CMV, BVM, MDP
Dynapac: CMV, Bouncing Vel
Sakai: CCV
Volvo: CMV
2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes

David White

Measurement Influence Depth

Repeatability / Reproducibility of IC MVs

Correlations - In-Situ Testing Equipment

Correlations to LWD/FWD/Dry Density

Spatial Comparison

Optimizing Construction Process

Characterizing Uniformity Using Geostatistics
Evaluation of the highway subgrade strength with the acceleration wave of the vibration roller

Japan Highway Public Corp., Y. Kitamori & K. Fujisaka
Sakai Heavy Industries, Ltd., K. Uchiyama
Fuku Construction Co., T. Nishi
Hazama Co., S. Nakajima

Density by nuclear Gauge & CCV

Intelligent Compaction for Soils & HMA

Stan Rakowski
Iowa 16 Workshop
April 3-4, 2009

Realities of the Paving Job Site

Asphalt Compaction – Research at Un. Of Oklahoma
Intelligent Asphalt Compaction Analyzer (IACA)

- Haskell-Lemon (Construction)
- University of Oklahoma (PI)
- Inovio Road Machinery (Sponsor)
- E.S. T. Inc. (Testing/CA)
- FHWA Award: $200K

Intelligent Compaction...

GPS-based Compaction Control

25-26 January 2009, Okaio, 11
2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes

David White

BOMAG

Asphalt Manager
Intelligent Compaction

Current Developments

- Surface covering compaction control on asphalt layers
- GPS receiver
- GPS reference station
- Roller PC for data managing and graphical representation of roller position and stiffness values
- Position accuracy: better than 10 cm
- CAD based evaluation program

Dean Pratts - Engineering Manager
Advanced Design Group

CAT AccuGrade® Compaction – CMV (CCV)

INTELLIGENT COMPACTION

Where we are at and where we need to be.
2008 Intelligent Compaction Soils and HMA: Review of Workshop Outcomes

David White

INTRODUCTION

CONTRACTOR’S DEFINITION:
Intelligent compaction is a compaction system that allows increasing productivity while decreasing risk.

REGULATORY AGENCY’S DEFINITION:
Intelligent compaction is another means of measuring and recording the quality of compaction during the construction process.

Day 2 - Working Sessions

- IC for Soils and Aggregate
- IC for HMA
- Implementation Strategies

Outcome: Develop a framework to move intelligent compaction/machine control forward into the mainstream of highway construction.

Summary Points

Table 2: Summary of main IC technology research needs

<table>
<thead>
<tr>
<th>Top 10 IC Technology Research Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Need correlation studies (cohesive, stabilized, granular, HMA, etc.) (136)</td>
</tr>
<tr>
<td>2. Education/training materials and programs (132)</td>
</tr>
<tr>
<td>3. Moisture content (influence + measurement) (131)</td>
</tr>
<tr>
<td>4. Integrated design + real-time data transfer (57)</td>
</tr>
<tr>
<td>5. Case histories + demos + benefits + success (46)</td>
</tr>
<tr>
<td>6. Engineering parameter to measure (density, modulus, stiffness, core mast temperature) (47)</td>
</tr>
<tr>
<td>7. Addressing non-uniformity (34)</td>
</tr>
<tr>
<td>8. Establishing QC/QA framework - statistically significant (28)</td>
</tr>
<tr>
<td>9. Measurement influence depth (19)</td>
</tr>
<tr>
<td>10. Promoting good geotechnical practices (13)</td>
</tr>
</tbody>
</table>

Summary Points

Table 3: Summary of common themes from panel discussion

<table>
<thead>
<tr>
<th>Common Themes from Panel Discussion Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. High level of interest from the state DOTs in further studying opportunities to implement IC.</td>
</tr>
<tr>
<td>2. Implementation strategies need to be developed and to gain experience and pertinent research.</td>
</tr>
<tr>
<td>3. Specifications for IC and in situ testing should not restrict manufacture/property developer innovations.</td>
</tr>
<tr>
<td>4. Contractor and state DOT field personnel and engineers need educational materials for IC and in situ QC/QA testing.</td>
</tr>
</tbody>
</table>

Summary Points

Table 4: Summary of common themes from the group implementation strategy session

<table>
<thead>
<tr>
<th>Common Themes from Group Implementation Strategy Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop IC training and certification program.</td>
</tr>
<tr>
<td>2. Demonstrate benefits of IC through demonstration projects.</td>
</tr>
<tr>
<td>3. Promote partnership as key strategy to implementation.</td>
</tr>
</tbody>
</table>

Summary Points

Table 5: Summary of key points

<table>
<thead>
<tr>
<th>Where we are:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lack widely accepted IC specifications in U.S.</td>
</tr>
<tr>
<td>- Need education/training materials</td>
</tr>
<tr>
<td>- Innovative IC and In-situ testing equipment</td>
</tr>
<tr>
<td>- IC technologies provide documented benefits (smooth drum - granular)</td>
</tr>
<tr>
<td>- Great potential and some limited successes for cohesive and HMA</td>
</tr>
<tr>
<td>- Poor database development for IC projects and user visions</td>
</tr>
<tr>
<td>- Initiated IC network</td>
</tr>
<tr>
<td>- Increasing acceptance/GPS infrastructure for cohesive grading/machine guidance</td>
</tr>
<tr>
<td>- “Don’t know what we don’t know”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Where we are going:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Standardized and scalable IC specifications</td>
</tr>
<tr>
<td>- Inclusion of various IC measurement systems</td>
</tr>
<tr>
<td>- Widespread implementation of IC technologies</td>
</tr>
<tr>
<td>- High-quality database of correlations</td>
</tr>
<tr>
<td>- Several documented successes for cohesive/stabilized/granular/HMA</td>
</tr>
<tr>
<td>- Better understanding of roadway performance - what are key parameters?</td>
</tr>
<tr>
<td>- Innovative new sensor systems and intelligent algorithms</td>
</tr>
<tr>
<td>- Integrated and compatible IC electronic plans with improved processes, efficiency and performance</td>
</tr>
<tr>
<td>- A real-time wireless data sharing</td>
</tr>
<tr>
<td>- Enhanced real-time and visualization software</td>
</tr>
<tr>
<td>- Improved analytical models of machine-ground interactions</td>
</tr>
</tbody>
</table>

Summary Points

Table 6: Strategies for moving forward

<table>
<thead>
<tr>
<th>Strategies for Moving Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Participate in partnerships for IC research and information exchange regionally and nationally</td>
</tr>
<tr>
<td>- Be an advocate for IC implementation</td>
</tr>
<tr>
<td>- Contribute to problem statement development for NCHRP, TRB, FHWA, AASHO, ASCE Committees</td>
</tr>
<tr>
<td>- Participate in IC conferences/studies and the annual EERC Workshop</td>
</tr>
<tr>
<td>- Participate in EERC Scientific and Policy Advisory Council (15 members) - IC and other issues</td>
</tr>
<tr>
<td>- Stay connected - Subscribe to EERC Technical Bulletins, Tech Transfer Summaries, Technical Reports, Educational Videos, etc., (www.intelligentcompaction.com)</td>
</tr>
<tr>
<td>- Develop comprehensive and strategic IC road map for research and educational/technology transfer</td>
</tr>
</tbody>
</table>
2009 Working Session Topic Areas

- **Topic #1 – Intelligent Compaction for Soils, Aggregate, and HMA**
 - Review and discuss the IC Roadmap and Develop Strategic Action Plans

- **Topic #2 – Automated Machine Guidance**
 - Discuss existing knowledge gaps? Equipment/software advancement needs? Educational/training needs? Specifications/standards?

- **Topic #3 – Intelligent Compaction Specifications and Performance-Based Specifications**
 - Review and discuss outline for IC development specification and performance-based specifications for geotechnical/earthworks.

Note: Sign-up for two of the three topic areas (~30 per session)
Joint Rapid Airfield Construction (JRAC):
U.S. Military’s New Approach to Contingency Airfield Construction

Dr. Gary Anderton
JRAC Program Manager and Airfields and Pavements Branch Chief
U.S. Army Engineer Research and Development Center

Briefing Outline

- The Problem
- The Solution
- JRAC Technologies
- Final Demonstration Project
- U.S. Military’s Worksite of the Future
- YOUR Worksite of the Future
- JRAC Web Site

The Future Force Projection Challenge

“We intend to transform the Army... to put a combat brigade anywhere in the world in 96 hours... we have received executive staff, a division on the ground in 144 hours, and five divisions in 30 days.”

Army Chief of Staff, Address to the Eisenhower Luncheon, 45th AUSA, 12 October 1999

“The combination of multiple entry points and direct deployment to objective areas changes the geometry of the battlefield, reduces vulnerability to enemy long range fires, compels the enemy to respond to many simultaneous threats, and eventually achieves the operational momentum required.”

TRADOC PAM 225-1, Oct 2006

“Deploy anywhere, anytime”

Joint Rapid Airfield Construction (JRAC)

Problem: Multiple contingency airfields needed for Future Force deployment.

- No capability to adequately assess/select potential airfields sites without committing excessive personnel, time and equipment
- Current contingency airfield construction is based upon cumbersome heavy equipment capabilities
- No rapid-curing, low-doseage soil stabilization capabilities and no sustainable light weight airfield paving systems exist in the military

“Deploy anywhere, anytime”
Inherent problems
Joint Rapid Airfield Construction (JRAC):
U.S. Military’s New Approach to Contingency Airfield Construction

Gary Anderton

Joint Rapid Airfield Construction (JRAC)
Solution: Provide an integrated systems approach to contingency airfield construction by integrating state-of-the-art technologies into the site selection, site assessment, earthmoving and stabilization phases.

Remote Site Selection/Design

Expedient Site Assessment

Enhanced Construction Technologies

Increase Maximum On the Ground (MOG) by Two
Current Methods - 14 Days

- Plans
- Site Recon
- Construct
- Strengthen
- Receive Aircraft

JRAC - 2 Days!

Intelligent Compaction

Dr. David White helped bring Caterpillar’s intelligent compaction system to the JRAC Demo project in Australia. Real-time mold temperature indices along with GPS location information greatly improved compaction efficiency.

3-D real-time augmented reality overview (l) and cab view (r).

Gary Anderton

Rapid Low Logistics Stabilization

Fiber drastically increases soil toughness

Polypropylene fibers

Polymer cap for moisture protection and dust proofing

US Army Corps of Engineers, Engineer Research and Development Center

JRAC Final Demonstration Project

June 2007
Bradshaw Field Training Area
Northern Territory
Australia
US/AS Combined Joint Task Force

Australia Video

Making Our Own Fun in the Outback

Survivorman Claude and Dave attempting to make fire the aboriginal way

US Army Corps of Engineers, Engineer Research and Development Center

U.S. Military’s Worksite of the Future

- Site Evaluation, Design and Construction are **Seamlessly Integrated**
- Site topography, design geometry, real-time construction data are all **accurately georeferenced**
- **Significant improvements** in productivity and accuracy
- Information flows **freely and in real time**

Your Worksite of the Future

- Site Evaluation, Design and Construction are **Seamlessly Integrated**
- Site topography, design geometry, real-time construction data are all **accurately georeferenced**
- **Significant improvements** in productivity and accuracy
- Information flows **freely and in real time**

US Army Corps of Engineers, Engineer Research and Development Center
Joint Rapid Airfield Construction (JRAC):
U.S. Military’s New Approach to Contingency Airfield Construction

Gary Anderton
IC Case Histories for Soil, Aggregate, and HMA

2nd Annual Intelligent Construction for Earthworks Workshop
Sheraton Hotel, West Des Moines, Iowa
April 14, 2008

David J. White, Ph.D.
Pavana Vennapusa, Ph.D.
Rachel Goldsmith
Luke Johanson

Premise

IC measurements are empirically related to in-situ point measurements (Vp, Vs, DCS, FC, etc.) and influenced by roller size, vibration amplitude, vibration frequency, velocity, soil type, and soil stratigraphy.

Caterpillar:
CMV, RMV, MDP

Dynapac:
CMV, Bouncing Value

Bomag: E\text{vib}

Sakai: CCV

Case/Ammann: k\text{a}

Volvo: CMV

Influence of Drum Operating Mode

Summary of operating modes (from Adam and Kopf 2004)
IC Case Histories for Soil, Aggregate, and HMA

Measurement Influence Depth

In-Situ Testing Methods

IC Projects

Case Histories
1. NCHRP Minnesota MnROAD
2. NCHRP Maryland I-70
3. NCHRP Colorado I-25
4. NCHRP North Carolina US311
5. NCHRP Florida I-10
6. FHWA Minnesota Rt. 4
7. Mn/DOT TH36
8. Mn/DOT TH60
9. FHWA Texas FM156
10. FHWA Kansas US69

MnROAD Research Facility
Albertville, Minnesota
NCHRP 21-09

MDP Vs. Point Measurements
IC Case Histories for Soil, Aggregate, and HMA

I-25 Project
Longmont, Colorado
NCHRP 21-09

Analysis of Intelligent Compaction

AFC Mode vs. Manual Mode
IC Case Histories for Soil, Aggregate, and HMA

Roller MV and in-situ point measurement compaction curves

Simple linear regression relationships

Percent Change Evaluation

Minnesota Route 4
Kandiyohi County, MN
FHWA Pooled Fund Study

Mapping

6 in. Class 5 Base Layer

2.5 in HMA Non-Wearing Course

Influence of Support Conditions – CCV

(White et al. 2008, FHWA IC Pooled Fund Project)
IC Case Histories for Soil, Aggregate, and HMA

TH 36 Project
Maplewood, MN
Mn/DOT Research

Influence of RMV on measurements

Correlations to Point Measurements
Localized Wet Area

Box Culvert

Measurement repeatability

Padfoot Vs. Smooth Drum Measurements
IC Case Histories for Soil, Aggregate, and HMA

Comparison between Padfoot and Smooth Drum CCV

THE END!
Mn/DOT’s Experience with LWD Implementation

Mn/DOT’s Experience with LWD Implementation

Intelligent Construction for Earthworks
April 14, 2006
Sheraton Hotel
West Des Moines, Iowa
Tim Andersen
Rebecca A. Embacher

Mn/DOT LWD Standard Configuration

- Currently Support Zorn LWD
- 27 Zorn LWDs
- Standard Configuration

Landing Plate Diameter: 200 mm (8 in)
Falling Weight: 16 kg (35 lb)

Mn/DOT’s Experience with LWD Implementation Rebecca Embacher

LWD Quality Compaction Projects

<table>
<thead>
<tr>
<th>Year</th>
<th>Number of Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>9</td>
</tr>
<tr>
<td>2008</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>18+ +Stimulus Package</td>
</tr>
</tbody>
</table>

Mn/DOT’s Current Calibration Guidelines

- Submittal
 - Test Institute (e.g., Zorn)
 - Unable to pass repeatability testing
 - Operating parts require repair/replacement

- Measure stress under the load plate
 - Standard Pressure = 0.23 MPa
 - Force = 6.28 kN
 - Drop Height = 4 cm
 - Load / Plate = 10 kg / 200 mm

Calibration Issues

- Recommended Intervals:
 - Annually
 - 10,000 measurements, but at least in every 2nd yr.

- 2009 Calibration Costs
 - Shipping: $1,460
 - Calibration: $550
 - Refurbishment: $200
 - TOTAL: $2,210/Unit
 - Annually: $59,400

Repeatability Testing

- Completed:
 - Annually
 - Immediately upon receipt of newly purchased device
 - After Calibration by Test Institute
 - Measurements no longer repeatable or are questionable

- Deflection Range
 - Polyurethane / Neoprene Pads
 - 0.25 mm, 0.8 mm, 1.5 mm, 2.3 mm
Mn/DOT’s Experience with LWD Implementation

Rebecca Embacher

Repeatability Testing

<table>
<thead>
<tr>
<th>Sample Size</th>
<th>Standard Deviation</th>
<th>Mean</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.000</td>
<td>0.189</td>
<td>2.450</td>
<td>0.013</td>
</tr>
<tr>
<td>3.000</td>
<td>0.747</td>
<td>2.585</td>
<td>0.000</td>
</tr>
<tr>
<td>3.000</td>
<td>1.493</td>
<td>2.898</td>
<td>0.017</td>
</tr>
<tr>
<td>3.000</td>
<td>2.050</td>
<td>2.409</td>
<td>0.026</td>
</tr>
<tr>
<td>3.000</td>
<td>2.229</td>
<td>2.155</td>
<td>0.029</td>
</tr>
</tbody>
</table>

Quality Compaction – Deflection Method

- **Optimum Moisture Content**
 - Standard Proctor
 - Except:
 - Granular: EOMC or I-p Standard Proctor Density Method
 - Non-Granular: I-p Standard Proctor Density Method

- **Passing Compaction**
 - $\delta \leq 1.10 \times \text{LWD-TV}$

- **Re-Evaluate LWD-TV**
 - $\geq 20\% \Delta\delta \leq 0.8\% \text{LWD-TV}$
 - Consistently Failing Results

LWD Test Depth / Sequence

- Seating: Drops 1 – 3
- Test: Drops 4 – 6

- Material Type
 - Granular Soils
 - One-half lift thickness
 - Granular Base / Stabilization Layer
 - 0 mm (compaction surface)
 - Non-Granular Soils
 - Compacted with Padfoot Roller
 - Bottom of deepest indentation of the padfoot penetration.
 - Compacted with Smooth-Drum Roller
 - Compaction Surface (1 mm)

Notes:

1. The surface depth is approximately 1 to 2 inches above the base, consequently, deflection measurements (obtained off lift base from the depth) within a compacted base measurement.
2. Compaction at the compacted surface (if any) for cases where disturbance effects exist (i.e., deflection measurements increase, due to disturbance caused by the test relative to that observed at the surface).

LWD Target Value Establishment

- **LWD – TV = Deflection instead of Modulus**
- **Two Options**
 - Calibration Areas
 - Comparison Testing

Option 1: Calibration Area

- 300 ft x Embankment Width x 4 ft
- 65% to 95% optimum moisture content
- $\Delta\delta < 10\%$ with repeated roller passes

New Calibration Area

- 2% MC of calibration area
- Varying material properties
Mn/DOT’s Experience with LWD Implementation

Rebecca Embacher

LWD Target Value Establishment

Option 2: Comparison Testing

- Granular
 - LWD & DCP
- Non-Granular
 - LWD & Sand Cone
- Procedure
 - 6 Comparison Tests
 - 10 LWD Tests (Max)
 - 2 Comparison Tests

Positive Characteristics – Inspectors Comments

- Quick & Easy
- Inspector Remains on Grade
- Increased Contractor Awareness
- Increased understanding of WC & processes
- Improved Uniformity
- Improved over DCP
 - Quicker
 - Contractor better understands results
- Reliable Measurements
 - (e.g., 199 LWD tests out of ~200 matched those of the DCP)

Troubles / Concerns

- Inspectors Comments
 - Utility Trench Portability
 - 2 Person Job
 - Not “light” weight
 - Water Table Effects
 - Bridging (remove crust on clay prior to testing).
 - LWD will move if sand is too wet and sloped.
 - Need to level plate.
 - Unable to obtain consistent LWD results with only 1 ft of sand above grade.

What’s Next in Minnesota

- Continued Specification Refinement
- Elimination of Calibration Areas
- Local Calibration Options

Thank You!
Mn/DOT’s Experience with LWD Implementation

Minnesota IC Experience

How is Uniformity Achieved?
Mn/DOT’s Experience with LWD Implementation

How to Test for Uniformity?

Sand Cones/Proctor => Density => Settlement

Test Roller => Soil Strength => Roadway Life

DCP => Shear Strength => Roadway Life

LWD => Deflection (Stiffness) => Roadway Life

Intelligent Compaction Projects

- 2004
 - District 3, MnROAD
- 2005
 - District 1, US 63, Duluth
 - District 7, US 14, Janesville
 - District 6, US 12, Alator
- 2006
 - District 2, TR 64, Bemidji
 - District 9, MnROAD
 - Metro District, I-494 Valley Creek Road, Saint Paul
- 2007
 - District 3, US 10, Staples
 - District 4, US 10, Detroit Lakes
 - District 7, TR 60, Washington
 - Metro District, TR 36, Saint Paul
- 2008
 - Carlton County, CSAH 2
 - Kandiyohi County, CSAH 4
 - District 5, MnROAD
 - District 7, TR 60, Washington

Quality Control (QC) Requirements

- Calibration Area
 - IC-TV & LWD-TV
- Continuous IC-MV record (production measurement plans)
 + Baseline Map
 + Poasting Layers
 + 90% IC-MV of 90% of IC-TV
- Moisture Control
 + 65% to 95% of OMC
- Weekly QC Report
 + Electronic and printed IC-MV maps
 + Correction Actions
 + Moisture Content Test Results
Mn/DOT’s Experience with LWD Implementation

Rebecca Embacher and Tim Andersen

Proofing Layers

<table>
<thead>
<tr>
<th>Granular Materials (Meeting Spec. 3149)</th>
<th>Proof Layer Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embankment Materials Height</td>
<td></td>
</tr>
<tr>
<td>≤ 2 feet</td>
<td>top of embankment height</td>
</tr>
<tr>
<td>> 2 feet & ≤ 4 feet</td>
<td>mid point & top of embankment height</td>
</tr>
<tr>
<td>> 4 feet</td>
<td>successive 2 foot layers</td>
</tr>
</tbody>
</table>

Quality Assurance (QA) Requirements

- Observation of final proof layer IC-MV
- Review and approve Contractor’s Weekly QC Report
- Stiffness Measurement
 - Light Weight Deflectometer (LWD)
- Test Rolling @ Top of Subgrade

IC Lessons Learned: What Worked

- Real-Time Results (IC and LWD)
- Increased
 - Compaction Uniformity
 - Inspector Safety
 - Grade Control
 - Speed Control
 - Record Keeping
 - Planning

IC Lessons Learned: What Worked

- Operators learn how to make better decisions
 - Pass/Fail Proof Rolling
 - Moisture Control
 - Soft areas identified and corrected earlier

Lessons Learned: Problems Encountered

- Data Loss
 - Storage Media not saving roller data.
 - Stolen Laptop
- Inaccurate GPS readings on IC roller.
- Base stations not correctly setup.
- Measurement value range (scale) not adequately reflecting range from “soft” to “stiff”.
- Support and training issues
 - Manufacturer to the Contractor

Lessons Learned: Problems Encountered

- Data Management
 - Massive Data Set
 - Utilization
 - Organization
 - Generates large amounts of printout maps
- Roller Operator Requirements
 - Increased communication to roller operator is needed
 - Computer Literate
 - Educated Operators
 - Bored and Loose Interest
Mn/DOT’s Experience with LWD Implementation

Tim Andersen

Lessons Learned: Problems Encountered

- Data Gaps
- Filtering of invalid data
 - Operator Screen
 - Printed Maps
 - Valid and invalid data provided in ASCII Files
- Need for certification of devices
 - Operation Parameters
 - Repeatability
 - System working

Lessons Learned: Problems Encountered

- Map Printing
 - Difficult
 - Alignment often not included
 - Includes valid and invalid data
- Too much technology coming too fast!

Ideal Map from Roller

Lessons Learned: Problems Encountered

- IC Roller is “mapper” not a “packer”
- Proofing Preparation
 - Limits “Workable” Areas
 - Cuts off Haul Roads

Potential IC Projects

- 2009
 - CSAH 22, Olmsted County
 - Select Stimulus Package Projects
 - TH 169 and I-494
 - TH 616
- 2010
 - CSAH 10, Olmsted County
 - Payneville Bypass (TH 23)
 - Central Corridor (LRT)

Future Granular IC Spec

- IC with Test Rolling & QC Testing
 - 2 proof layers
 - Base map & top of subgrade
- IC with QC Testing
 - 5 proof layers
 - Δ Ave MV between roller passes on 4 proof layers
 - Δ Ave MV between 3 proof layers
- IC with QC Testing
 - 2 proof layers
- IC with out QC Testing
 - 2 proof layers
Mn/DOT’s Experience with LWD Implementation

Tim Andersen

Goal

- Provide incentives & disincentives based on uniformity
- How uniform is uniform?

Uniformity

- At what depth does uniformity have no effect on pavement life?
 - 2 feet?
 - 3 feet?
 - 4 feet (southern MN frost depth)
 - 6 feet (northern MN frost depth)
 - + 10 feet
Iowa Real Time Network (IowaRTN)

Iowa Real Time Network (IowaRTN)

RTK-GPS Network Components
- Base Stations
- Communication Network
- Servers
- Users

RTK-GPS Network Uses
1. Surveying
2. Construction
3. Asset Management
4. GPS/AVL
5. Monitoring
6. Agriculture
7. ????

Deployment Project Approach
- DOT-Owned, Vendor-Managed
- Use DOT Facilities for Base Stations
- Use DOT Communications Network
- Use DOT Central Server Facility
- Free Access to Public & Private Sectors

IowaRTN Features
1. Statewide Coverage
2. Accuracy (1 cm Hor.; 2 cm Vert.)
3. Precision (1 Sigma)
4. Open Architecture
 - (RTCM 2.3, 3.0, 3.1, CMR, CMR+)
5. Base Station Redundancy
6. Server Redundancy
7. Use of Cellular Comms for Corrections

Base Station Locations

Presentation 6: Iowa Real Time Network (IowaRTN) - Michael Jackson
Iowa Real Time Network (IowaRTN)

Project Schedule

- **January, 2009** - Contract Executed w/ Leica Geosystems
- **July, 2008** - Base Station Deployment Begins
- **November, 2009** - Completion of Base Station Deployment
- **December, 2008** - Network Acceptance Testing
- **January, 2009** - Training

- **February 2, 2009** - IowaRTN activated for use
- **February 28, 2009** - 196 Users Registered
 350 Rovers Registered for use

Preparing to Use the IowaRTN

- Need a receiver (rover) that, at a minimum, can:
 - Connect to the internet via cell phone or cell modem
 - Send a NMEA message with account username and password, or has NTRIP functionality
 - Can utilize RTCM 2.3, RTCM 3.x, CMR or CMR+ message formats

Notes:
- All users are strongly encouraged to run the most recent firmware for the receiver equipment they are using.
- For machine control (construction and agricultural) or project areas in cell service voids, solutions exist to provide on-site radio broadcast of baseline and network solutions.
- Please make sure you have a navigated position on your receiver prior to making connection with the network.

Iowa DOT Web Site

(www.iowadot.gov)

Web Site Index

- A to Z
- DOT Information
- Iowa RTN
- Location Services
- Register for an IowaRTN account
- IowaDOT application
- IowaDOT installation
- Leica training presentation

Iowa Real Time Network
Iowa Real Time Network (IowaRTN) Michael Jackson

Iowa Real Time Network (IowaRTN)

<image>

IowaRTN Products Schema

<image>

Contact Information

Steve Milligan
Statewide RTN Coordinator
515-239-1981 (office)
515-290-2831 (cell)
515-239-1873 (fax)
steven.milligan@dot.iowa.gov

Michael Jackson
Special Projects Engineer
515-239-1192 (office)
michael.jackson@dot.iowa.gov

Questions?

<image>

Steps to Network Positioning

<image>

Steps to Network Positioning (Spider MAX)

<image>
Iowa Real Time Network (IowaRTN) Michael Jackson

MAX Corrections

1. Transmission of raw observation data from the reference stations to the network processing facility.
2. Network estimation process including ambiguity resolution to reduce the stations to the common ambiguity level.
3. Optional iMAX GGA position received from the rover at the network processing facility. The least appropriate reference station is chosen for the rover based on its location.
4. Formation and transmission of NMEA 2.3 network message using corrections for the Master station and correction differences for the auxiliary stations.
5. Computation origin accuracy rover position using the full information from the reference network.

Steps to Network Positioning (Spider iMAX)

- Fix the carrier phase ambiguities between the reference stations.
- Calculate the estimated errors for each reference station.
- Interpolate the estimated reference errors to the location of the rover.
- Apply corrections to the data from the master reference station.
- Rover processing to calculate a position.

i-MAX Corrections

1. Transmission of raw observation data from the reference stations to the network processing facility.
2. Network estimation process including ambiguity resolution to reduce the stations to the common ambiguity level.
3. NMEA GGA position received from the rover at the network processing facility. The least appropriate reference station is chosen for the rover based on its location. The master station is chosen as the reference station closest to the rover.
4. Leica GPS Spider calculates the network corrections for the rover and applies them to the observations from the master station.
5. Formation and transmission of NMEA 2.3 or Leica format corrections from the master station.
GPS Technology in Planning, Design, and Construction Delivery; GPS Automatic Grade Control Systems, Engineering Distance Education; NCHRP 10-77

Jeff Hannon, Charles Jahren, and David White

5.1 LITERATURE REVIEW

TRB Annual Conference, Wash DC, Jan 09

Workshops/Presentations Attended:

- Curtis Clabaugh (WY DOT): Mapeine and Digital Terrain Models for Project Design
- Kevin Akin (Caltrans): Bringing Machine Control to California DOT (Caltrans) Construction Projects
- Gerhard Pichler (T.B. Rowe & Co.): History of Machine Control: Contractor's View
- Ron Ciccarone (Rochester & Associates): Regenerating Digital Terrain Data for Use with Contractor's Equipment
- Lance Brown (Kiewit Southern): Automated Machine Control - AMG

5.1.3 LITERATURE REVIEW

Collection of Agency Specifications and History

1. CA Dept of Transportation
2. MN Dept of Transportation
3. IA Dept of Transportation
4. NYS Dept of Transportation

5.1.4 LITERATURE REVIEW

Collection of Agency Specifications and History

1. Caltrans History 2001 - Present
 - 2001, Technology Introduced/Early Adopters (Vendors/Contractors)
 - 2003, Machine Guidance Committee (Designers, Surveyors, Construction, Office Engineers—tounderstand the technology as an organization)
 - What is it?
 - How does it work?
 - What does it mean to us?
 - 2005, 2nd Level Guidance: Director, AGC
 - 2006, Industry Capacity Expansion Plan
 - 2007, Pilot Projects
 - Current Status: Software Application Change (can't afford everything wanted)
 - Current Status: Organizational Functions/Process Work-Flow Changes (Create Policy)
 - Future: Full Adoption
5.4.1. LITERATURE REVIEW
Collection of Agency Specification and History

CalTrans Results/Early Conclusions
1. Most issues Organizational (Change is Required)
 • Paper plans (2D) are the legal document
 • 3D design files are an INTERMEDIATE product
 • Model/digital files not part of bid documents, not required by agency at bid date
2. Discovered design software application limitations
 • Current design software is cross-section based, not model based
 (therefore additional processes/work is required)
3. Agency reluctance to provide electronic files
 a) Additional liability
 b) Digital translation issues (is it distortion?)
 • No single data format
 • Different triangulation algorithms
 • Teradate count of translations (XML parser problems)
 c) Mindset
4. No ROI data (cost savings)

Caltrans Definition of Suitable Projects for AMG:
• Design is based on a Digital Terrain Model (DTM)
• Earthwork quantities constitute a ‘major pay item’
• GPS environment is good (line of sight to satellites)
• Required Electronic Files are available:
 (CalTrans provides to Contractor so it can build the model)
 a) Original survey DTM
 b) Alignments and profiles
 c) Cross-sections
 d) Contour grades
 e) 2D Microstation CAD files

CalTrans Design Software Requirements:
• Integration of 3D model, 2D CAD files, slope stake notes
• Interoperability (Import/Export in standardized formats)
• Translation issues identified and resolved
 (by software vendors/software applications)

CalTrans GOAL of FULL IMPLEMENTATION:
1. Management/Organizational Commitment
2. Design Every Project in 3D (3D Model)
3. Model to be included in Bid Package
4. Alter work flow processes during design, bidding, and construction
5. Identify at early stage, projects which should NOT use AMG
6. Assign responsibility for digital file maintenance
7. Mutual GPS calibration at start of projects
8. Agree on Project survey control to be used for life of project
GPS Technology in Planning, Design, and Construction Delivery;
GPS Automatic Grade Control Systems, Engineering Distance Education;
NCHRP 10-77

Jeff Hannon, Charles Jahren, and David White

5.4.2 LITERATURE REVIEW
Collection of Agency Specifications and History

Caltrans 3D Model Bid Packages:

- Digital security/integrity
- Liability waivers
- Copyright protection
- Accountability for digital file management
 (revisions, changes, mistakes, alterations, etc.)

Caltrans Unresolved:

How to synthesize 3D model, 2D CAD files, slope stake notes??
(information silos)

Area to address based upon Caltrans experience:

- Technological Awareness (Agency/Contractor/Vendors)
- Organizational Functions/Process Work-Flow
- Software Application Tools (3D Design)
- Legal/Mindset: liability/sharing electronic data
- Quantitative data showing cost savings
- Agency Employee Technological Competencies
- Agency Employee information handling capacity

2. Mn/DOT History 2001-Present

‘DOT not ready culturally, legally, philosophically for 3D design’
(Barrett, 2007)

2001 P069 Software Project (Bentley GEOPAK, 3D Modeling)
2003 Pilot Project(s)
2005 Most Districts completed at least one project
2005 Machine Control Special Provision 2011 (Grading Only)
2006 Full implementation state-wide

Mn/DOT Machine Control Special Provision 2011 (Grading Only)

Mn DOT: (1) Mandates AMG or (2) Allows AMG use

- Mandated AMG
 - Defines type of electronic data (ED) provided by agency
 - Contractor assumes responsibility for integration of ED with machines
- Defines agency time windows for providing and upgrading ED to contractor
- Waives delay liability and pay adjustments due to inadequate GPS signal reception
- Specifies specific GPS hardware contractor can use (2 vendors, others by Mn/DOT approval/interoperability)
- Specifies use of Robotic Total Stations (RTS)-No GPS in use
- Waives guarantee of RTS ED (for information only)

- Allows AMG Use
 - MnDOT does not share ED
 - Quality of the proposed construction model.
 - Ability of the owner to approve and review the design.
 - Ability of the operator to accurately apply the design in the field.

Conversely, the lack of tools required to create effective models leads to 3D Machine Control Systems failure and design workflow change. (Dillingham, Jensen, & Schulist, 2007)
GPS Technology in Planning, Design, and Construction Delivery; GPS Automatic Grade Control Systems, Engineering Distance Education; NCHRP 10-77

5.1. LITERATURE REVIEW
Collection of Agency Specifications and History

3. IA/DOT 05-01103 Developmental Specification 09/18/97 (Grading Only)

Two Sections:
1. Agency Responsibilities
2. Contractor Responsibilities

4. NYS/DOT E1-06-007 REVISION TO STANDARD SPECIFICATIONS:

- Section 105-10 (Survey and Stakeout)

- Incorporate surveying parameters and standards for quality control of positioning terrain data, and provide guidance on the appropriate interpretation of terrain data provided in contract documents.

- Levels of precision and methods of measurement

- Sharing of control network

- Synchronization of survey procedures between the agency and contractor

- DTM liability of accuracy waiver

- Agency Engineer can spot check and order re-work

- Provides Engineer with GPS rover = 8 hours of training in use

- Assumes liability for all errors in use of AGS

- Agency liability waiver for errors during data conversion (between formats, transitions)

- Daily calibration of equipment

- Meet accuracy and tolerances of the Standard Specifications

- Establishment of secondary control points @ 1000 ft intervals or less by closed level loops

- Preserve all control points

- Set hubs at hinge points of k-cnt M@ 1000 ft intervals or less

- Grade stakes at other critical points

- Written Machine Control grading work plan at Pre-Construction Conference

- Bid item (LS) for GPS Machine Control Grading

- Incorporate use of CAD/3D computer systems in the field for modeling construction features, determining potential conflicts, and calculating quantities.
S.a.I. LITERATURE REVIEW
Collection of agency specifications and history

NYSDOT E1-06-007 REVISION TO STANDARD SPECIFICATIONS:

Section 625 (SURVEY OPERATIONS, ROW MARKERS & PERMANENT SURVEY MARKERS (ALL WAYS)). This specification is revised as follows:

To require the sharing of electronic engineering data, when available, between the Contractor and Department.

“Under this method, all horizontal and vertical control, alignment control, existing terrain data and proposed design data shall be shared/exchanged electronically and kept current between the Contractor and the Engineer.

All original active files of electronic contract data shall be maintained and stored by the Department. Prior to beginning field operations, the Contractor and Engineer shall mutually determine acceptable uses of and procedures for the technology being used, and how data can be exchanged for use in stakeout, automated equipment operations, verification and quantity calculations.

All engineering data shall be stored and shared in Department standard formats, and shall be derived primarily from the original electronic data provided by the Department.”

The University of Southern Mississippi
School of Construction
Participating State DOT Briefings

David Jared, GDOT

GDOT’s IC & GPS Grading Experience

Preliminary IC Demonstrations
- Two demos on projects in spring 2008
 - Sakai
 - Bomanic

SAKAI

SAKAI

SAKAI

SAKAI
Participating State DOT Briefings

David Jared, GDOT
Bomag IC Comparison

- Provided generally consistent information
- Stiffness values correlate fairly well with in-place density

What’s Next?

Georgia is 1 of 13 States Participating in Three Year Pooled-Fund Study on IC...

TPP 5 (L63)

Accelerated Implementation of Intelligent Compaction Technology for Enhanced Soils, Aggregate Base, and Asphalt Pavement Materials

GPS Grading Technology

- Successfully used on pilot projects
- Two special provisions approved

Questions?

Children are an heritage of the LORD...

Psalm 127:3
Intelligent Compaction

- US FHWA Research Project DTFH61-07-R0032
- "Accelerated Implementation of Intelligent Compaction Technology for Embankment Subgrade Soils"
- Location
 - US 219 in Springville, NY
- Scope
 - 4 mile long new construction with two lanes in each traffic direction

Intelligent Compaction

- Materials
 - Granular non-cohesive soils
 - Granular subbase material
- Rollers
 - Bomag single, smooth drum IC roller.
 - Caterpillar single, smooth drum IC roller.

Alternative In-Situ Testing

- Non-Nuclear Density
 - Falling Light Weight Deflectometer (LWD)
 - Zorn
 - Soil Density Gage (SDG)
 - TransTech
 - Electronic Density Gage (EDG)
 - Electronic Density Gage LLC.

Automated Machine Guidance

- Contractor driven

New Specification Develop

- Nothing at this time
Today’s Agenda

- Creating 3D Model – Geographically Coordinated
 - Create HA & VA
 - Create Template
 - Roadway Designer
 - Create the 3D Model
 - Display Features
 - Drive Roadway

- Exporting Surface to Machine Control
 - Trimble TTM
 - Leica GSI
 - Topcon TN3
 - LandXML

Any Questions?

Corey Johnson, Bentley Systems
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

IC Topics

1. BOMAG
2. IC Models
3. Directed Exciter – Vectoring
4. Evibe
5. Soil IC
6. Documentation
7. Asphalt IC
8. Training Simulators

The 1st BOMAG Compactor

BOMAG BW 60

Our Compaction Tradition

The First Ride On
BOMAG Compactor - BW 200

North American IC Models

BW 213 DH-4 BVC
BW 190 AD-4 AM

Expanded Line of IC Models

14 Current Models Worldwide
- BW 177 DH-4 BVC
- BW 213 DH-4 BVC
- BW 225 DH-4 BVC
- BW 141 AD-4 AM
- BW 151 AD-4 AM
- BW 151 AC-4 AM
- BW 154 AD-4 AM
- BW 154 AC-4 AM
- BW 154 AP-4 AM
- BW 172 AP AM
- BW 174 AP AM
- BW 174 ACP AM
- BW 190 AD-4 AM
- BW 203 AD-4 AM
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

2009 Line of IC Models

15 Models Worldwide

78 "Perimeter Frame
Heavy Tandem AM

02/10/2008

BOMAG

History

Key steps in the development of the BOMAG Technology

1983 First compaction measurement system for soil compaction (Tenderer BTM 01)
1996 Compaction Management (BCM 03)
1998 Variomatic for asphalt rollers
1998 Variocut
2000 Eviro Technology – Measurement for stiffness
2001 Asphalt Manager for Heavy Tandem Rollers
2004 German DOT (BAST) research project with GPS
2006 European High Speed Rail Projects
Ongoing – IC Studies with State DOT’s, NCHRP, and ICFF

What is “intelligence”

“... the ability to adapt its own behavior in response to varying situations and requirements”

Vario Directed Exciter

From Horizontal to Vertical
6 Force Outputs Created by Vectoring

BOMAG

The Traditional Way of Compacting Soil

- High or Low Amplitude Choices
- Pre-defined number of passes – Possibly or Experience
- No real time information on load bearing capacity or progress on achieved stiffness
- Potentially Low Efficiency
- Contractor loses time and money
- Material can be crushed
- Water potentially damaged
- Compaction quality compromised
Overview of BOMAG IC Technology

Dave Dennison, BOMAG
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

- Weak spot analysis
- Proof Rolling Capabilities
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

- Evibe Min and Max
- Evibe Average
- Frequency
- Average Speed
- Track Length
- Temperature

BCM05 Documentation

Printed Report Documentation

Documented Low Stiffness Area
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

Documented Low Stiffness Area

Area will have repeat failure without drainage work

BOMAG Illinois Warehouse Site 2007

BOMAG Minnesota Highway Site 2007

BOMAG Colorado – Highway Extension 2008

BOMAG California – Water Treatment Plant 2006

Optional Pad Shell Kit
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

California – Water Treatment Plant 2006

Mexico – Warehouse Site 2008

Mexico – Warehouse Site 2008

BW 177 BVC at Manchester GB Rail

BW 213 BVC High Speed Rail

BW 213 BVC on High Speed Rail Section

Clay / Stone Mixed Soil
10-12 inch Lifts
Cologne – Frankfurt
Germany 2006

Crushed Rock Sub base
Munich Germany 2008

Proof rolling
Improvement of
base compaction on old
railtrack section
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

Evib (MN/m²)

Documentation of Evib and roller position

Documentation of asphalt surface temperature and roller position
Overview of BOMAG IC Technology

Evibe, # of passes, and position

BCM05 Display

Asphalt Manager

Vario Directed Exciter

From Horizontal to Vertical
6 Force Outputs Created by Vectering

Compaction Test on HMA Wear Course

Asphalt Manager Benefits

- Operator Friendly
- Exceptional Compaction Performance
- Uniform Compaction
- Continuous Feed back to the Operator
- Wide Range of Versatility
- Proof Rolling to identify soft spots
- P.R. to confirm previous work
- Over Compaction is avoided
- Unnecessary Passes are avoided
- Reduced Shock Loads
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

Asphalt Manager Benefits

Intermediate

Finish

Breakdown

Horizontal Vector Longitudinal Joints

Colorado State Highway 2008

Training Simulator

BOMAG
Overview of BOMAG IC Technology

Dave Dennison, BOMAG

Thank you!
Connected Worksite Solutions

AccuGrade™ Grade Control Systems
- Track-Type Tractors
- Motor Graders
- Hydraulic Excavators
- Wheel Tractor Scrapers
- Backhoe Loaders
- Soil Compactors
- Asphalt Compactors
- Asphalt Pavers

AccuGrade™ for Track-Type Tractors
- Single & Dual Laser
- Single & Dual GPS
- Universal Tracking System (UTS)
- Cab GPS

It is not just about fine grading...

Technology Enabled Road Construction
Controlled Study... Two Identical Roads... Same Crew

Importance of Technology to Contractors

Increased Job Site Velocity
- Conventional: 24.32 hours
- AccuGrade: 21.65 hours

Increased Job Site Quality
- Conventional: up to 60%
- AccuGrade: 95%

Reduced Job Site Costs
- Conventional: $5,000,000
- AccuGrade: $2,000,000

position Sensing Cylinder

AccuGrade™ moving forward...

Integrating technology into machines
Position Sensing Cylinder (PSC) technology

With the PSC, the AccuGrade™ system is able to gather the current cylinder length and determine the current position of the bucket tip in real-time (no virtual sensor lag).

The PSC also removes the front linkage sensors from the traditional high wear areas such as the bucket linkage, and places them safely inside the bucket cylinder for increased integration, responsiveness, and reliability.
Connected Worksite Solutions

Terry Rasmussen, Caterpillar

Questions

Thank You!

Terry Rasmussen
309-494-6321
rasmussen.terry@cat.com

EquipmentManager

EquipmentManager is a web-based application that uses key indicators from your equipment, such as hours, location, and diagnostic codes, and combines it with powerful tools like mapping, maintenance scheduling, and troubleshooting instructions. This application enables quick identification of actions required to maximize your equipment uptime and control owning and operating costs.

Product Link

Product Link is the hardware that enables information flow between on-board systems and EquipmentManager using satellite technology. Key indicators such as hours and location are delivered to EquipmentManager on a regularly scheduled basis. Other indicators such as diagnostic codes and unauthorized usage are launched from the machine by Product Link as they occur. Product Link is offered as standard equipment on many Cat machines.
Dynapac Compaction Analyzer and Optimizer

Dynapac Compaction Analyzer and Optimizer

Dynapac Compaction Analyzer-Soil (DCA-S), Features

- Storage and analysis of compaction meter data
- Full-color 12" display for operator guidance
- Positioning
 - Relative
 - Absolute (GNSS) (Sub-meter to cm accuracy available)
 - With reference line or without
- Any local grid available
- Adjustable resolution
- Calibration module included
- Full analysis capability incl. TXT-file export
- PDF or paper print-outs
- Office and roller versions. Both include simulator mode

Production, station and offset

![Production, station and offset](image)

Analysis

![Analysis](image)

Dynapac Compaction Optimizer (DCO)

- Monitors the ground stiffness and adjusts the amplitude accordingly
Dynapac Compaction Analyzer and Optimizer

Gert Hansson, DYNAPAC

Dynapac Compaction Optimizer-Features

- 0-2 mm (0.079") amplitude
- Six manual steps or automatic, stepless adjustment
- Fully compatible with DCA

Dynapac Compaction Analyzer-Asphalt (DCA-A)

- Register the number of passes (static/vibratory)
- Measure and register the surface temperature (calculate core temperature)
- Graphic display of the temperature and the number of passes (real time in the roller)
- Documentation of the compaction process
- Background material for the quality analysis
- Support for continuous improvements of the paving process, rolling patterns and overall compaction results

Production mode-Roller screen

Workflow CompLogger

- Analysis (office)
 - Transfer from CompLogger
 - Print results
 - Create PDF’s
 - Export text files
 - Save in compaction data archive

- Job site preparation (office)
 - Decide on documentation setup
 - Size of working areas
 - Compaction target
 - Transfer to CompLogger

- Production
 - Collect compaction data
 - View graph or surface plot

Benefits

- Hand held, battery powered system
- Wireless communication
- Common interface with high-spec DCA
- Cost efficient CCC
- Huge leap from the competition in functionality and storage capacity.
- Full analysis and print function (SW or Colour)
- Less than five minute installation on any prepped roller.
Intelligent Compaction for Soils and Asphalt

Stan Rakowski, Sakai

Instrumented Rollers
It works!
Data speaks for itself!

IC Measures Engineering Properties changing from
Density → Modulus
Density
• Mass / Volume
• Proctor Test
Moisture Control
Stiffness /Modulus
Mechanistic Testing Equipment

Compaction Control Value
CCV

Changes in Amplitude Spectrum and Condition of ground

CCV Sensor

Influence of Stiffness of Underlying Layer on CCV

Section A Section B Plate loading section

Test layer
Subbase layer

C}x in soil

Distance (m)
IC Demos

- California, Florida, Georgia
- TPF Projects: Minnesota, Kansas
- NCHRP: Maryland, Florida, N Carolina

Compaction Information System (CIS)

Surface Temperature

Note: Forward passes show the surface temperature more accurately. Water spread on the road makes the surface massy, so surface temperature may show up as the water evaporates. Surface temperature readings are always lower than the water temperature.

CIS Compaction Information System

Software

- “01. Plan/Analysis”
- “02. Construction/Analysis”
- “03. Analysis/Documentation”

Input
- Mapping
- Output

Airborne PD, AutoCAD

Airborne PD, Stand alone

Data entry: GPS, RTK, etc.

Software: GIS, Mapping, Analysis, Reporting
Intelligent Compaction for Soils and Asphalt

Stan Rakowski, Sakai

How mesh data is recorded

What Mesh Size?
- 1 ft, 3 ft, 6 ft?
- Smaller mesh creates more data and larger files

Number of Passes

CCV
What we’ve seen so far?

- IC can improve QC/QA procedures
- Data gives 100% color coverage
- Complete documentation for every lift
- Can quantify uniformity of compaction
- Data handling and analysis methods are improving
- Software is getting better and easier to use
- It works!
Factors affecting CCV

- Material
 - Type of soil: cohesive, granular
 - Moisture content
 - Maximum aggregate size
- Stiffness of underlying layer
- Vibration amplitude
- Travel speed and travel direction
- HMA temperature

The Data Speaks For Itself!

Thank You
Project Planning Using: GIS, GPS and RFID

Kelly Miller, Trimble

XYZ Solutions

1. Real-time Decision Support and Visualization (AR)
 - Installation of XYZ software on all sites that have vehicle operations. Connection to live positioning data.
2. Training via Simulation
 - Use of XYZ scenes, ADM modules and Physics Simulations to train machine operators
3. Pre-Mission Planning
 - Using XYZ scenes and ADM modules to test sequencing and spatial problems.

Prospective Client Quote

“Don’t tell me how technology is going to make me money. I need tools that are going to help with cost avoidance!”

Asset Management is a subset of a larger set of positioning workflows.

Customers Operate Mixed Fleets

The Dilemma: “Do I have to go to a dozen different screens to manage my mixed OEM fleet of equipment?”

Trimble Response

- “Mixed fleet” has two dimensions:
 - Not just machines - but the trucks, compressors, generators that make up the site to enable true operational asset management
 - Brand agnostic – every customer has a mixed fleet of brands and they have a desire to use just one application for asset management
Kelly Miller, Trimble

Project Planning Using: GIS, GPS and RFID

- Trimble Connected Community aggregates workflows and connects user communities.
- Connected Community Users
- Site Web Cameras
- GeoPic Viewer

Benefits of Connecting Your Community
- A web based service for centralizing information sharing and communication
- A central location for file storage, management and version control
- A controlled means of communicating requests for information, site remedial actions, and equipment management with internal and external community members
What is Your Community

- **Internal Community**
 - Locators (In-house & Contract)
 - Damage Prevention Departments
- **External Community**
 - One Call Center
 - Department’s of Transportation
 - Municipalities

Questions

Kelly Miller
kmiller@xyzsolutions.com
770.772.3570 (office)
404.630.5126 (cell)
www.xyzsolutions.com
Introduction

- Jeroen Snoeck
 - Dutch, living in Colorado
 - Construction work experience: 16 years with Caterpillar and Trimble in Europe and North America
 - Now: Segment Manager for Paving with Trimble

Trimble: Transforming work through technology

Trimble, Construction Technology and Compaction Control Systems

Jeroen Snoeck
April, 2009
Trimble, Construction Technology and Compaction Control Systems

Trimble Connected Construction Site
- Full suite of solutions for the heavy and highway contractor

Trimble Compaction Control Systems
- Measures soil stiffness as an indication of soil compaction
- Displays compaction measurements, pass counts, provides guidance to the operator
- Maps and records compaction data

But how does it differ?
- Combining accuracy with on-board designs
 - Real-time, on-machine as-built surface generation
 - Cut/fill mapping
 - QA/QC: Immediate rework where design grade has not been met
 - Guidance to alignments
 - Detection and location of soft spots
Trimble, Construction Technology and Compaction Control Systems

Jeroen Snoeck, Trimble

Trimble CCS900 – How it differs

- **Office Software**
 - Connect wirelessly
 - For analysis of data
 - Archival of data
 - For warranty documentation
 - Evidence of good practice

Trimble CCS900 – How it differs

- **Portability**
 - GCS and CCS systems transferred between machines
 - Lowers cost of entry
 - Increases return on investment

Trimble CCS900 – How it differs

- **After market installation**
 - Any compactor from any manufacturer
 - Used and new machine

- **Open cabs and enclosed cab**
 - System designed for harsh construction environments

Trimble CCS900 – How it differs

- **Expertise**
 - Many compaction solutions struggle with:
 - Rugged, daylight readable displays, computers
 - Site setup for RTK GPS, radio communications
 - Local coordinate systems
 - Design data (importing, preparation, management, display)
 - Office software solutions
 - All are Trimble core competencies!
Where we make a difference
- Combining accuracy with on-board designs
- Trimble Office Software - Compaction Module
- Common Trimble Components: Portability
- After market installation
- Trimble Connected Construction Site
- Expertise

Let's take a step back
- Challenging economic times
 - Stimulus funds for construction ~$40-60 Billion
 - Funded by us, the taxpayer
 - How can we spend this money in a more efficient way?
 - Technology can help cut DOT and Contractor cost and increase product quality

Potential Value of Technology for States and Counties
- Construction process efficiency: Up to 90% reduction in rework, 75% reduction in machine time, 40% reduction in fuel, 10% reduction in materials
- Speed: Finish 20-30% faster, reduced traffic and environmental impact
- Environmental impact: Up to 45% less fuel utilization on the site, on-road trucking reduction, less impact on existing road traffic
- End Product quality: More accurate and durable construction thanks to better information
- Safety: Keeping people out of trenches, away from machines, avoiding danger areas

The Technology is Mature
- The technology we are talking about has matured well beyond the initial experimental stage at which it was a decade ago and is really becoming mainstream

Summary
- Trimble broad technology range, expertise and system portability provide a unique offering in the compaction arena
- The GPS and 3D technologies are tried and tested and should be considered to cost construction costs and increase road quality
Facilitator Report - Discussion

Intelligent Construction for Earthworks
West Des Moines, Iowa
April 14-16, 2009

2009 Working Session Topic Areas

- **Topic #1** – Intelligent Compaction for Soils, Aggregate, and HMA—Review and Discuss the IC Roadmap and Develop Strategic Actions Plans
- **Topic #2** – Automated Machine Guidance—Discuss existing knowledge gaps? Equipment/software advancement needs? Educational/training needs? Specifications/standards?
- **Topic #3** – Intelligent Compaction Specifications and Performance-Based Specifications—Review and discuss outline for IC development specification and performance-based specifications for geotechnical/earthworks.

Breakout Session Discussion

1. Intelligent Compaction Research Database
 - Standardize storage and documentation
 - Database components: Design, construction, and long-term performance
 - Establish a public domain for data access
2. Intelligent Compaction and In Situ Correlation Studies
 - Correlation studies on HMA and WMA
 - Relationships with density and stiffness (which is appropriate?)
 - Correlations with different in-situ test devices with different machine operation settings
 - Rapid determination of IC target values
3. Project Scale Demonstration Case Histories
 - Capture barriers to address during implementation
 - Compare IC results with conventional operations

Breakout Session Discussion

4. Intelligent Compaction Specifications
 - Data communication between contractor and owner
 - Reporting problematic areas
 - Standardized data format
 - Differentiate owner (e.g. QA) and contractor (e.g. QC) responsibilities
 - Separate specifications for Soil/Aggregate and HMA
 - Recommendations on rate operating parameters
 - Acceptance requirements (e.g. non-uniformity) depending on the compaction layer depth below the surface layer
 - Calibration standards for machines using independent measurements
 - Repeatability and accuracy of GPS and machine values
 - Incentive based pay factors to contractor
 - Consistency in measurement output units
 - Identify the state-of-the-practice

Breakout Session Discussion

5. Educational/Certification Program
 - Contractor and agency certification/Training/Troubleshooting
6. Understanding Roller Measurement Influence Depth
 - Effect of different matierial types, geotextiles, cobbles, water table, foreign objects, utilities
7. IC technology Advancements and innovations
8. In-situ Testing Advancements and Mechanistic based QC/QA
 - Rapid test procedures/device to replicate roller loading
 - Define mechnistic parameters to be used for QA
 - Critical engineering properties relative to the location of testing in an embankment
Facilitator Report - Discussion

<table>
<thead>
<tr>
<th>Breakout Session Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Data Management and Analysis</td>
</tr>
<tr>
<td>- Explore wireless data transfer capabilities</td>
</tr>
<tr>
<td>- Explore effective ways for data storage</td>
</tr>
<tr>
<td>- Continued research on geostatistical analysis for uniformity</td>
</tr>
<tr>
<td>- Options for simple to robust analysis</td>
</tr>
<tr>
<td>- What type of data resolution needed?</td>
</tr>
<tr>
<td>- Criteria for data filtering</td>
</tr>
<tr>
<td>- Extent of detail in the data to be retained</td>
</tr>
<tr>
<td>10. Understanding Impact of Non-Uniformity on Performance</td>
</tr>
<tr>
<td>- How do you define uniformity? (variance, coefficient of variation)</td>
</tr>
<tr>
<td>- What is acceptable and what is not?</td>
</tr>
<tr>
<td>- What is the critical area in embankment where it should be uniform?</td>
</tr>
<tr>
<td>- Effect of vertical and spatial non-uniformity on performance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prioritized IC Road Map Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. IC Specifications (41)</td>
</tr>
<tr>
<td>2. IC and In-Situ Correlation Studies (25)</td>
</tr>
<tr>
<td>3. In-Situ Testing Advancements and Mechanistic Based QC/QA (20)</td>
</tr>
<tr>
<td>4. Understanding Impact of Non-Uniformity on Performance (16)</td>
</tr>
<tr>
<td>5. Data Management and Analysis (16)</td>
</tr>
<tr>
<td>6. Project Scale Demonstration Case Histories (13)</td>
</tr>
<tr>
<td>7. Understanding the Measurement Influence Depth (13)</td>
</tr>
<tr>
<td>8. IC Technology Advancements and Innovations (9)</td>
</tr>
<tr>
<td>9. IC Research Database (8)</td>
</tr>
<tr>
<td>10. Educational/Certification Program (8)</td>
</tr>
</tbody>
</table>

| Topic #2 – Automated Machine Guidance – Discuss existing knowledge gaps? Equipment/software advancement needs? Educational/training needs? Specifications/standards? |

<table>
<thead>
<tr>
<th>Knowledge Gaps and Deficiencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lack of documented experience and champions (17)</td>
</tr>
<tr>
<td>2. Transition 2D to 3D design practice (11)</td>
</tr>
<tr>
<td>3. File compatibility issues (7)</td>
</tr>
<tr>
<td>4. Limited desire to move toward pavement AMG (stringline is “safe”) (6)</td>
</tr>
<tr>
<td>5. Surface information and design changes should be left in the hand of the designer, not modified by the contractor (2)</td>
</tr>
<tr>
<td>6. Currently the paper document is the legal document, design files are often under a disclaimer for inaccuracy (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education/Training</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Initial training + experience + follow-up training (10)</td>
</tr>
<tr>
<td>2. Future conferences/workshops/web-based training (7)</td>
</tr>
<tr>
<td>3. Certification (2)</td>
</tr>
<tr>
<td>4. Use of intelligent design tools will increase efficiencies (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification/Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Acceptable tolerances linked to construction elements (rough grade, finish grade, paving, etc)(9)</td>
</tr>
<tr>
<td>2. Specification inclusive of various technologies (Laser, GPS, Total Station) (3)</td>
</tr>
<tr>
<td>3. Object referencing (e.g., top of curb vs. gutter flow line?) (1)</td>
</tr>
<tr>
<td>4. Design surface file size limitations (computer, software and AMG machine limits) (1)</td>
</tr>
<tr>
<td>5. When will the best utilization of resources be obtained using AMG and 3D design? (1)</td>
</tr>
<tr>
<td>6. When are specification and design files available to contractor? (1)</td>
</tr>
<tr>
<td>7. Solicit wide ranging review/feedback (1)</td>
</tr>
</tbody>
</table>
Facilitator Report - Discussion

Goals

- Develop a specification that is not technology specific
- Define what DOT’s want to measure and format of the data

Specification Options Review

- Option 1: Roller based QC with pre-selected MV-TVs
- Option 2: IC-MV maps to target locations for QA point measurements
- Option 3: MV-TVs from compaction curves to target locations for QA point measurements
- Option 4: Calibration of IC-MVs to QA point measurements
- Option 5: Performance based QA specification with incentive based payment

Key Attributes of IC Specification

1. Description of the rollers and configurations, GPS (accuracy), other position technology
2. Guidelines for roller operations (speed, vibration frequency, vibration amplitude, and track overlap) (normalization)
3. Records to be reported (time of measurement, roller operations/ Madonna, soil type, moisture content, layer thickness, etc.) (electronic output, portable, how often? real-time viewing?, anti-data manipulation), (form for, # passes), roller operator ID
4. Repeatability and reproducibility measurements for IC measurement values (IC-MVs)
5. Ground conditions (smoothness, levelness, isolated soft/wet spots/high SWT, variation of materials)
6. Calibration procedures for rollers and selection of calibration areas (variable soils), (independent site/mechanical, see superpave)
7. Simple linear regression analysis (statistical analysis, populations?) between IC-MVs and point measurements (moisture content) (stiffness)
8. Number and location of quality control (QC - what testing/for wks. DOT) and quality assurance (QA - what testing/independent test)
9. Operator training, and certification
10. Basis of payment/incentive
11. Acceptance procedures/corrective actions based on achievement of minimum MC/Tx, IC (MC target values) and associated variability, (when - construction traffic etc., IC - if contractor data used needs to be verified)

Identified Challenges

- Calibration of IC outputs to ..?
- Data filtering for acceptance?
- Compatibility of different systems?
- Existing specifications are technology specific
- Will never be able to keep up with a “technology spec”, need to shift the technology to the contractor
- DOT’s need to agree upon what end result properties they want to measure – “gold standard”
- Soils and asphalt will need separate specs.
- IC use for QA requires FHWA verification
- What is the IC tool for the state agency?

Key Discussion Points

- Stiffness may be a good alternative to traditional density measurements
- IC for HMA – primarily a QC tool
- Need guidance on linking values to location/depths in fill
- Using IC data should lead to better quality
- Traditional methods rely heavily on the experience of the inspector
- Need certification/calibration of roller and operator
- Moisture content is critical
- What electronic output/file will be required?
- When will acceptance occur, especially on bigger project
- How to define acceptance so IC requirements are realistic
- Pavement roughness/FWD test protocols
Facilitator Report - Discussion

Next Steps
- Education – Identify benefits
- Technology transfer involving manufacturers, contractors, and state DOTs
- High quality DVD
- Develop standalone tools/software for inspector
- Develop consensus approach for specification

Action Items

Action Items
- 6 Case Histories (Tech Briefs)
- 6 Webinars
- Specifications Technical Working Group (TWG)
- EERC Website
- Explore NHI Course
- Research Gaps
 - Develop Problem Statements
 - Identify Key Research Partners
- AASHTO Technology Implementation Group
 - Proposals submitted annually
 - Involve many state DOTs
State DOT Briefings

In a one-hour session on day 1, state DOT representatives from WI, KY, MI, VA, NY, SD, IL, MO, MS, KS, TX, GA, LA, and WA provided a brief summary of their current state of practice and research involvement relating to AMG, IC, and in situ QA/QC. Excerpts from this session are as follows:

Wisconsin Department of Transportation (WisDOT)

- Recently started implementing AMG on earthwork projects using special provisions to contracts. WisDOT provides a Microstation model to the contractor, and then contractor develops a 3D model and cross-checks with WisDOT before using it on the project. WisDOT does periodic spot-checking.
- A new IC research project started in coordination with ARA, Inc., and University of Wisconsin. Project scope includes investigating three types of soil, aggregate, and asphalt materials using three types of IC rollers. Project starts during summer 2009.

Kentucky Transportation Cabinet (KYTC)

- Have been allowing AMG on earthworks the past several years and is included in current specifications. KYTC performs QA using periodic conventional spot-checking. KYTC gives the contractor a Microstation file and contractor generates 3D model. Currently, five contractors in the state use AMG on earthwork projects. Six of twelve districts in the state now have GPS/Total Station equipment for spot-checking.
- Collaborating with University of Kentucky to figure out how to implement IC for Kentucky soils. Soils are variable from large rock/boulder fill to cohesive soils. Have been trying LWD on cohesive soil projects. Limitedly used DCP on cohesive soil projects. Interested in moving away from nuclear gauge testing.

Michigan Department of Transportation (MDOT)

- Not done anything yet on IC.
- Interested in using alternative QA/QC methods to nuclear gauge testing. No research was performed on this aspect yet.
- Two projects were conducted using AMG in 1997 and 1998.

Virginia Department of Transportation (VDOT)

- Not done anything yet with IC on soils. Conducted couple of research projects on HMA using IC, however results were inconclusive.
- Certainly interested and willing to pursue to better understand IC equipment and to understand what the output numbers mean. Interested in correlations with non-nuclear methods for QA.
- Information from IC rollers such as location of roller and number of passes is very helpful to document. Need to understand/study more to use stiffness measurements from roller.
New York State Department of Transportation (NYSDOT)

- Participant of FHWA IC pooled fund study. A demonstration project is scheduled for this summer on US 219 in Springville, NY. Project involves testing on granular subgrade and subbase materials using Bomag and Caterpillar single smooth drum IC rollers.
- Recently started investigating the use of Zorn LWD, TransTech's Soil Density Gauge (non-nuclear), and Electronic Density Gauge devices for QA/QC.
- Use of AMG is contractor driven. No requirement by NYSDOT. No new specifications planned yet.

South Dakota Department of Transportation (SD DOT)

- Not done anything yet on IC. Interested in pursuing research with granular embankment materials and granular fill with MSE walls.
- Tried using Soil Stiffness Gauge – results were inconclusive as the soils were too coarse.
- Concern – half of the state is covered with highly expansive soils with need of high moisture contents (close to optimum) during compaction. Will stiffness be good enough to check quality?

Illinois Department of Transportation (IDOT)

- AMG has been likely used recently on some earthwork projects.
- Currently use nuclear gauge for QA/QC on soils and HMA. Interested in more research with IC. Currently, no demand in state to eliminate nuclear gauges. Also use DCP for subgrades and foundations and static cone penetrometer in problematic subgrades.

Missouri Department of Transportation (MoDOT)

- No projects with AMG.
- Will be using IC on HMA this summer. Willing to move away from using nuclear gauges. Limitedly used DCP. Did a research project with ISU (Dr. Chris Williams) on permeability testing on HMA instead of nuclear density testing.

Mississippi Department of Transportation (MDOT)

- Participant of FHWA IC pooled fund study. A project in southeast Mississippi with cement-stabilized soils has been identified for IC demonstration project.
- Contractor and state DOT personnel quite interested in understanding more about IC.

Kansas Department of Transportation (KDOT)

- Participant of FHWA IC pooled fund study. Did a project last August as part of the pooled fund study. Waiting to see research results before pushing for implementation.
- No push on AMG yet.
Texas Department of Transportation (TxDOT)

• FHWA IC pooled fund participant—did a project last year. Results are encouraging.

• Planned another project for August 2009 on soil and base materials. At this stage, IC will not be used for QA but will be used for QC. Waiting for example specifications from other states.

Georgia Department of Transportation (GDOT)

• All the IC work has been only on HMA. Conducted two demo projects in spring 2008 using Sakai and Bomag IC rollers on HMA. Contractors on the projects were very interested in trying the new technology. The projects were several miles long, so had to move base stations time to time to get readings. Nuclear density gauge and density cores were taken for comparison at random locations. Correlations between density and IC stiffness values on one project were not good while on other project were good. Roller pass coverage information was helpful—results showed that contractor did not achieve consistent roller pattern.

• FHWA pooled fund study participant. A demo project is planned on a parking lot as part of the pooled fund study—will map stiffness of base before paving to compare results with HMA layer stiffness.

• Willing to learn more about IC on soils.

• Successfully implemented AMG on two pilot projects. These projects were initiated on contractor’s request. Developed special provisions to allow for AMG.

Louisiana Department of Transportation and Development (LA DOTD)

• No studies on IC yet.

• Interested in using IC to address QC issues on soils and HMA. Having questions about which methods are best for QA, how can moisture be measured by rollers in soils, and how does the electronics in the machines work.

Washington State Department of Transportation (WSDOT)

• Not done anything on IC yet.

• Currently use nuclear gauges for HMA and soils. Tried some electrical density gauges—not certain on its benefits yet.

• AMG—not certain on its use in the state.

Iowa Department of Transportation (Iowa DOT)

• Developing an IC research project in collaboration with ISU. Looking at three construction projects this year with limited testing and will be conducting more rigorous testing next year.
Breakout Sessions

On day 2, six breakout sessions were conducted covering three topic areas listed below. Each topic area had a morning and an afternoon session. A sign-up sheet was provided on day 1 to target about 20 participants per each group session. Each group had a facilitator and a recorder. The brief agenda used for discussion in the breakout sessions is provided under each topic.

- **Topic #1: Intelligent Compaction for Soils, Aggregate, and HMA—Review and Discuss the IC Roadmap and Develop Strategic Actions Plans**
 - Review the road map/top 10 technology and research need identified in the 2008 workshop report.
 - Discuss and debate each topic area.
 - Develop an updated road map and rank the topic areas using participant voting.
 - Identify action plans, leadership roles, and potential funding needed to move forward on each topic.
 - Develop a schedule on the duration of the proposed action plan.

 - Develop a framework to move AMG technology forward into the mainstream of highway construction. Review the Iowa DOT developmental specifications as an example.
 - Identify constraints and strategies for moving forward in the following areas:
 - What are the knowledge gaps?
 - What equipment advancements are needed?
 - What education/technology transfer needs exist?
 - What standards/specifications guidelines need to be developed?

- **Topic #3: Intelligent Compaction Specifications and Performance-Based Specifications—Review and discuss outline for IC development specification and performance-based specifications for geotechnical/earthworks**
 - Briefly review the ISSMGE and Mn/DOT specifications.
 - Discuss and debate the developmental specification options.
 - Identify performance parameters that could be used to evaluate or predict the performance of embankments and pavement foundations.
 - Identify a quantitative measurement strategy for each performance parameter, considering in situ testing, performance monitoring, statistical sampling plans, documentation, and similar requirements (existing versus emerging).
 - Identify any perceived gaps in the measurement strategy (e.g., limitations in existing measurement or monitoring technology, verification procedures, or the ability of the performance parameters and measures to predict behavior).
 - Assess how the roles and responsibilities of the agency and contractor could change. Consider: geotechnical investigations, utility identification and relocation, design solution (e.g., selection of the appropriate solution and the design of that solution),
permitting requirements (e.g., disposal of spoils), quality assurance activities (e.g., development of QA/QC and verification plans, sampling and testing, monitoring, documentation), and remediation strategy and implementation (if specified performance is not achieved)

- Identify risks associated with developing a performance specification for embankment construction and pavement foundations. Risk issues could be related to site investigation, design, measurements, testing reliability/accuracy, etc.

In each breakout session, after identifying list of topics to debate, the list was prioritized through discussion and voting. The following is a summary of findings of each group. For some sessions, (#) indicates number of votes given to a topic for prioritization.

Intelligent Compaction for Soils, Aggregate, and HMA 1
— Paul Weigand (Facilitator), Pavana Vennapusa (Recorder)

Prioritized Ranking of 2008 Workshop Road Map Topic Areas

1. Intelligent Compaction Specifications/Guidance (22)
2. Intelligent Compaction and In Situ Correlations (18)
3. In Situ Testing Advancements and New Mechanistic-Based QC/QA (13)
4. Data Management and Analysis (12)
5. Project Scale Demonstration and Case Histories (12)
6. Understanding Roller Measurement Influence Depth (9)
7. Understanding Impact of Non-Uniformity of Performance (9)
8. Intelligent Compaction Technology Advancements and Innovations (8)
9. Intelligent Compaction Research Database (6)
10. Education Program/Certification Program (4)

Proposed Action Plans/Schedule/Responsibilities

1. Intelligent Compaction and In Situ Correlation Studies
 a. Action Plans:
 i. Determine the sensitivity to soil type
 ii. Correlation studies on HMA (full-depth and composite) and WMA
2. Intelligent Compaction Specifications
 a. Action Plans:
 i. Make policy decisions for acceptance
 ii. Suggest using IC for QC
 iii. Make separate specifications for soils/aggregate and HMA
 iv. Recommendations on roller operating parameters
 v. Specify acceptance requirements (e.g., non-uniformity) depending on the compaction layer depth below the surface layer.
vi. Understanding influence depth will impact acceptance requirements
vii. Include elevation and coverage information as part of documentation
viii. Determine what is necessary for IC to qualify for QA
ix. Frequency of data reporting
x. Reporting problematic areas promptly
xi. Data format for reporting
xii. Differentiate responsibilities of owner and contractor in terms of who’s collecting and interpreting data
xiii. Option to have a tiered approach by using IC as part of QC and independent QA by owner

b. Schedule and Responsibilities:
 i. Pooled fund studies

3. In Situ Testing Advancements and Mechanistic-Based QC/QA
 a. Action Plans:
 i. Defining mechanistic parameters to be used for QA
 ii. Calibration test strips during construction
 iii. New test equipment

4. Data Management and Analysis
 a. Action Plans:
 i. Explore wireless data transfer capabilities
 ii. Explore effective ways for data storage
 iii. Continued research on geostatistical analysis
 iv. Tools separately for simple (relative easy to use for inspectors) and robust analysis

Intelligent Compaction for Soils, Aggregate, and HMA 2
— Ed Engle (Facilitator), Pavana Vennapusa (Recorder)

Prioritized Ranking of 2008 Workshop Road Map Topic Areas
1. Intelligent Compaction Specifications/Guidance (19)
2. Intelligent Compaction and In Situ Correlations (7)
3. In Situ Testing Advancements and New Mechanistic-Based QC/QA (7)
4. Understanding Impact of Non-Uniformity of Performance (7)
5. Data Management and Analysis (4)
6. Understanding Roller Measurement Influence Depth (4)
7. Education Program/Certification Program (4)
8. Intelligent Compaction Research Database (2)
9. Project Scale Demonstration and Case Histories (1)
10. Intelligent Compaction Technology Advancements and Innovations (1)
Proposed Action Plans/Schedule/Responsibilities

- Intelligent Compaction Research Database
 - Action Items:
 - Identify important elements of a database (design, construction, and long-term performance)
 - Standardize database formats
 - Establish a public domain for data access

- Intelligent Compaction and In Situ Correlation Studies
 - Action Items:
 - Study effect of moisture content
 - Develop relationships with density and stiffness (which is appropriate?)
 - Develop correlations with different portable spot test devices with different machine operation parameters
 - Explore alternate ways of determining target values in a rapid way
 - Research into effects of static vs. dynamic tests on correlations
 - Schedule and Responsibilities:
 - 30-month research study
 - FHWA and Iowa State University

- Intelligent Compaction Specifications/Guidance
 - Action Items:
 - Develop universal/national calibration standards for machines using independent measurements
 - Repeatability and accuracy of GPS and machine values
 - Incentive-based pay factors to contractor
 - Consistency in measurement output units
 - Identify the state of the practice
 - Guidance on how to use the tools
 - Schedule and Responsibilities:
 - Pooled fund study

- Educational Program/Certification Program
 - Action Items:
 - Develop contractor and agency personnel certification and training program
 - Educate on what elements can lead misleading data?
 - Schedule and Responsibilities:
 - Industry/agency

- Understanding Roller Measurement Influence Depth
 - Action Items:
 - Evaluate the measurement influence depth for different material types and layering conditions
 - How geotextiles/fabric/isolated areas of cobbles/water table/foreign objects/utilities in the foundation layers affect the roller values
- Schedule and Responsibilities:
 - Who expertise in instrumentation in soils
 - 18 to 24 months

- In Situ Testing Advancements and Mechanistic-Based QC/QA
 - Action Items:
 - Need of a device that could replicate machine loading conditions and similar influence depth
 - What material property is critical relative to the location of testing in an embankment?
 - Range of index values for a given material type

- Schedule and Responsibilities:
 - Industry and collaboration with research organizations

- Data Management and Analysis
 - Action Items:
 - What data should be collected?
 - Geostatistics for uniformity characterization
 - What type of data resolution needed?
 - Criteria for data filtering
 - Frequency of data reporting to the owner
 - Extent of detail in the data to be retained (all production data or top few meters or final pass?)

- Schedule and Responsibilities:
 - IT personnel, statisticians
 - 24 months

- Understanding Impact of Non-Uniformity on Performance
 - Action Items:
 - How do you define uniformity? (variance, coefficient of variation)
 - What is acceptable and what is not?
 - What is the critical area in embankment where it should be uniform?
 - Effect of uniformity in vertical and spatial (on grade) aspects

- Schedule and Responsibilities:
 - 2 years
 - Agency/University collaboration

Automated Machine Guidance 1
— Charles Jahren and John Hannon (Facilitators), Heath Gieselman (Recorder)

Knowledge Gaps
- Transition to a 3D design practice from a 2D design practice. (8)
- Many DOTs have not worked with machine control technology, and there is lack of awareness. DOTs are still trying to catch up with technology. (5)
• Unfamiliar with file formats and terms relating to design files lack consistency (e.g., TIN, DTM, TTM, XML). (3)
• File types can lack information needed for machine control. (4)
• Surface information and design changes should be left in the hand of the designer, not modified by the contractor. Specifically, this applies to change orders. (2)
• Ability to link design information between segments of construction projects that are created by separate entities (utilities, grade, etc.). (0)
• Communication issues between construction and design communities. (0)

Education/Training
• New operators are not familiar with the fundamentals of survey, which are basis for AMG, resulting in lack of ability to fully take advantage of technology and misuse. (4)
• Certification should be offered for AMG training pertaining to specialization (design, operator, field QC). (2)
• Fundamentals of earthmoving are not practiced and operators are not properly trained by employer. (1)
• Contractor should have employees trained in house or by other means. (1)
• Equipment manufacturers/dealer networks should train on the equipment they produce for clients. (1)
• Addition of technology helps expose knowledge gaps. (0)
• Addition of technology adds a layer of complexity to operator. (0)
• DOT should take active role in training agency personnel in AMG technology. (0)
• Educational institutions should train students with fundamentals and current technologies. (0)
• Operator union has given machine control training in some states. There is a good network of training available in the Midwest. (0)
• Follow-up training for experienced operators. (0)

Specifications/Standards
• Tolerances should be addressed as to what is acceptable for various aspects of construction (rough grade, finish grade, paving, etc.). (9)
• Specification is not encompassing of other technologies (Laser, GPS, Total Station). (3)
• Definitions as to how spatial data presented (pipe elevation given at flow line?). (1)
• Design surfaces have files size limitations based upon equipment capabilities (computer, software, and AMG machine limits). (1)
• When will the best utilization of resources be obtained using AMG and 3D design. (1)
• When are spec and design files available to contractor. (1)
• Some state specifications prohibit machine control by the way they are worded (legal issue). (0)
• Process control checks should be defined for validation (safety net). (0)
• What is the surface that is desired to be delivered to contractor (multiple, pavement, subgrade). (0)
• GPS accuracy requirements. (0)
• Accuracy of individual pieces of equipment and validation. (0)

General

• Currently, the paper document is the legal document; design files are often under a disclaimer for inaccuracy. (2)
• Increased transfer of data increases productivity. (0)

Automated Machine Guidance 2
— Charles Jahren and John Hannon (Facilitators), Heath Gieselman (Recorder)

Knowledge Gaps

• There is limited desire to move toward with pavement AMG by the paving contractors due to initial cost, lack of knowledge and comfort (the string is “safe”), and high QC/QA requirements. (6)
• We don’t know what we don’t know because we need to have more experience! (5)
• Lack of champions for technology in various agencies (industry, state, contractor). (4)
• Design needs to be in 3D. (3)
• States limit usage due to resistance to “change.” (2)
• Old equipment is not functional for technology application so a greater initial investment costs are needed, which may not seem practical. (1)
• ROI information is not easily available. (1)
• Definition of AMG was unclear until exposure at this conference. (0)
• Technology capabilities are unclear. (0)
• Pavement design file and machine control inconsistencies. (0)
• Pavement community finds challenges in steering with AMG. (0)
• Machines are not capable to handle large file sizes and design files must be reduced to allow loading onto machines. (0)
• Time constraints to evaluate data in a real-time environment. (0)
• Transparency between data systems. (0)
• Need large scale “road map” to provide the champions information to work with. (0)
• Terrain is a limitation due to increased costs of survey, design, etc. (0)
• RTK GPS is a “rough grade” system. (0)
Education/Training

- Future conferences/workshops/web-based training need. (7)
- Use of intelligent design tools will increase efficiencies. (2)
- There are difficulties in training; therefore, multiple sessions are needed and hands-on experience is a must and follow-up is needed. (1)
- Training through use and experience. (1)
- “Big 3” companies need to do a better job of supporting paving operations. (1)
- Inspector training is needed in simple awareness as well as technology use. (1)
- Software is needed that designs in 3D and reduces problems between various inputs (utilities, grade, etc.). (1)
- Scan tour for exposure to technologies. (0)
- Manufacture training specifically though simulations including troubleshooting. (0)
- Exposure through open houses and demonstrations. (0)
- Survey industry can provide support to those that need assistance. (0)
- Operators must be trained. (0)
- Pavement Community has been able to achieve 3–5 mm accuracy in the vertical using an augmented GPS system (slope sensors, laser and GPS combination). (0)
- Key aspect: 3D design and electronic plan production and geospatial control of equipment. (0)
- Iowa RTN 2 cm vertical and 1 cm horizontal; be aware of time latency and must be addressed. (0)

Specifications/Standards

- A standard 3D data stream/file format is needed for contractor.
- A standard for QC/QA data to be returned to agency.
- How often should the data be evaluated/monitored (real time, daily, etc.).
- Continued literature review is needed.
- Users input, including those opposed to technology, is needed during creation. (1)
- Proper project selection of initial spec application is important; position yourself for success and give yourself an opportunity to gain experience.
- Unnecessary increases in design size (ethics).
- Specify control in the construction process to deal with surface changes due to as-built construction.
Intelligent Compaction Specifications and Performance-Based Specifications 1
— Tom Cackler and David White (Facilitators), Caleb Douglas (Recorder)

Challenges
- Calibration of IC outputs to known acceptance tools.
- Data filtering—what is needed for acceptance?
- Compatibility of different systems.
- Existing specifications are tied to the technology being used.
- Will never be able to keep up with a “technology specification”; need to shift the technology to the contractor.
- DOTs need to agree upon what end result properties they want to measure.

Goals
- Develop specification that is not technology specific.
- Discussion of what DOTs want to measure and format of the data.

Discussion
- Stiffness is a good approach and have value to work towards—need to get away from density on soils and aggregate.
- On asphalt, IC is likely to be only QC tool because stiffness is artificially generated by temperature.
- Need guidance on what values are important to test at difference points in fill.
- Using IC data will lead to better quality.
- Traditional methods rely heavily on the experience of the inspector.
- We should set a goal to have developmental specification out in the next year.
- Need to have some certification and calibration of roller and operator.
- Moisture content is critical.
- What electronic output file will be required?
- When will acceptance occur, especially on bigger projects?
- How to define acceptance on variability so IC requirements can be realistic?
- High water table can have big impact on IC values; Minnesota experience is to be about 4 feet above the water table to get out of the zone of influence.
- Need to find independent calibration procedure for roller devices.
- Need anti-data manipulation procedures or safeguards.
- Need to standardize on a value to create a process (stiffness).
- FWD output protocol has a universal output.
Review of Developmental Specifications

- How to move forward with a broadly utilized developmental specification in the US?
 - Owner tools are needed, i.e., software.
 - Work with DOTs that are going to build a project in 2009 and 2010 to form a working group to develop a common framework and identify the tools needed to support the easy application of the specification.
 - Industry buy-in; need to reduce risk and build understanding and training.
 - Roller calibration is needed because spot tests do not measure what the IC roller does (area of influence).
 - **Important Action Item:** Calibration of IC devices with nationwide accepted procedure.

Intelligent Compaction Specifications and Performance-Based Specifications 2
— Tom Cackler and David White (Facilitators), Caleb Douglas (Recorder)

Discussion

- What is the “gold standard”; currently, it is density and moisture; what is needed with IC specifications?
- Look at “superpave” implementation and QC requirements.
- Soils and asphalt will need separate specifications.
- Do we need a “research” level specification?
- Need to address chain of custody of the data in the specification. Is there a owner’s device that could go on the machine that could be used to verify to the DOT the data is good?
- FHWA position is to require verification process if they use contractor test results.

Review of Developmental Specifications

- Option 5 may need to be a goal but not where we start. DOTs may be unsure about making large scale changes. Could start with a process that builds into option 5.
- States currently working on developmental IC specifications for soils: Iowa, Minnesota, Texas, Georgia, California (Caltrans), (Alaska on asphalt?), and Utah (perhaps also pooled fund states).
- What is the IC tool for the state agency?
- Don’t need to tie GPS with IC.
- Texas will use nuclear gage and perhaps FWD to verify; needs easy, simple, fast test that will also moisture content in the field.
Facilitator Report—Summary

The results of the breakout sessions were analyzed to identify the priorities for advancement in each of the three topics. Prioritization of key issues from each topic was determined based on a detailed review of the recorder notes, finding common topics among sessions, and summarizing the participant votes. The results for this analysis are summarized in the following information.

Intelligent Compaction for Soils, Aggregate, and HMA

Prioritized IC Road Map Elements and Action Items

1. Intelligent Compaction Specifications/Guidance (41)
 a. Data communication between contractor and owner.
 b. Reporting problematic areas.
 c. Standardized data format.
 d. Differentiate owner (e.g., QA) and contractor (e.g., QC) responsibilities.
 e. Separate specifications for soils/aggregate and HMA.
 f. Recommendations on roller operating parameters.
 g. Acceptance requirements (e.g., non-uniformity) depending on the compaction layer depth below the surface layer.
 h. Calibration standards for machines using independent measurements.
 i. Repeatability and accuracy of GPS and machine values.
 j. Incentive-based pay factors to contractor.
 k. Consistency in measurement output units.
 l. Identify the state of the practice.

2. Intelligent Compaction and In Situ Correlations (25)
 a. Correlation studies on HMA and WMA.
 b. Relationships with density and stiffness (which is appropriate?).
 c. Correlations with different in situ test devices with different machine operation settings.
 d. Rapid determination of IC target values.

3. In Situ Testing Advancements and New Mechanistic-Based QC/QA (20)
 a. Rapid test procedures/device to replicate roller loading.
 b. Define mechanistic parameters to be used for QA.
 c. Critical engineering properties relative to the location of testing in an embankment.

4. Understanding Impact of Non-Uniformity of Performance (16)
 a. How do you define uniformity? (variance, coefficient of variation)
 b. What is acceptable and what is not?
 c. What is the critical area in embankment where it should be uniform?
d. Effect of vertical and spatial non-uniformity on performance.

5. Data Management and Analysis (16)
 a. Explore wireless data transfer capabilities.
 b. Explore effective ways for data storage.
 c. Continued research on geostatistical analysis for uniformity.
 d. Options for simple to robust analysis.
 e. What type of data resolution needed?
 f. Criteria for data filtering.
 g. Extent of detail in the data to be retained.

6. Project Scale Demonstration and Case Histories (13)
 a. Capture barriers to address during implementation.
 b. Compare IC results with conventional operations.

7. Understanding Roller Measurement Influence Depth (13)
 a. Effect of different material types, geotextiles, cobbles, water table, foreign objects, and utilities.

8. Intelligent Compaction Technology Advancements and Innovations (9)

9. Education Program/Certification Program (8)
 a. Contractor and agency certification/training/troubleshooting.

10. Intelligent Compaction Research Database (8)
 a. Standardize storage and documentation.
 b. Database components: design, construction, and long-term performance.
 c. Establish a public domain for data access.

Table 3 shows the top 10 IC technology research and implementation needs that were prioritized by the workshop participants.

Table 3. Prioritized IC technology research/implementation needs

<table>
<thead>
<tr>
<th>Prioritized Top 10 IC Technology Research/Implementation Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intelligent Compaction Specifications/Guidance (41)</td>
</tr>
<tr>
<td>2. Intelligent Compaction and In-Situ Correlations (25)</td>
</tr>
<tr>
<td>3. In-Situ Testing Advancements and New Mechanistic Based QC/QA (20)</td>
</tr>
<tr>
<td>4. Understanding Impact of Non-Uniformity of Performance (16)</td>
</tr>
<tr>
<td>5. Data management and Analysis (16)</td>
</tr>
<tr>
<td>6. Project Scale Demonstration and Case Histories (13)</td>
</tr>
<tr>
<td>7. Understanding Roller Measurement Influence Depth (13)</td>
</tr>
<tr>
<td>8. Intelligent Compaction Technology Advancements and Innovations (9)</td>
</tr>
<tr>
<td>9. Education Program/Certification Program (8)</td>
</tr>
<tr>
<td>10. Intelligent Compaction Research Database (8)</td>
</tr>
</tbody>
</table>
Automated Machine Guidance

Knowledge Gaps and Deficiencies

1. Lack of documented experience and champions. (17)
2. Transition 2D to 3D design practice. (11)
3. File compatibility issues. (7)
4. Limited desire to move toward pavement AMG (stringline is “safe”). (6)
5. Surface information and design changes should be left in the hand of the designer, not modified by the contractor. (2)
6. Currently the paper document is the legal document, design files are often under a disclaimer for inaccuracy. (2)

Education/Training

1. Initial training + experience + follow-up training. (10)
2. Future conferences/workshops/web-based training. (7)
3. Certification. (2)
4. Use of intelligent design tools will increase efficiencies. (2)

Specifications/Standards

1. Acceptable tolerances linked to construction elements (rough grade, finish grade, paving, etc.). (9)
2. Specification inclusive of various technologies (Laser, GPS, Total Station). (3)
3. Object referencing (e.g., top of curb vs. gutter flow line?). (1)
4. Design surface file size limitations (computer, software and AMG machine limits). (1)
5. When will the best utilization of resources be obtained using AMG and 3D design? (1)
6. When are specification and design files available to contractor? (1)
7. Solicit wide ranging review/feedback. (1)

Based on the discussion, four implementation needs were determined, as shown in Table 4.

Table 4. Summary of AMG technology implementation needs

<table>
<thead>
<tr>
<th>Summary of AMG Technology Implementation Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Lack of documented experience and champions + limited desire to transition from 2D to 3D practice (34)</td>
</tr>
<tr>
<td>2. Education + Training (in-house, manufacturer, web-based) + Conferences + Certification (21)</td>
</tr>
<tr>
<td>3. Widely accepted specifications on tolerances, requirements, and responsibilities (19)</td>
</tr>
<tr>
<td>4. Issues with file compatibility + Software capabilities/limitations (9)</td>
</tr>
</tbody>
</table>
Intelligent Compaction Specifications

Goals
- Develop a specification that is not technology specific.
- Define what DOTs want to measure and format of the data.

Challenges
- Calibration of IC outputs to …?
- Data filtering for acceptance?
- Compatibility of different systems?
- Existing specifications are technology specific.
- Will never be able to keep up with a “technology spec”; need to shift the technology to the contractor.
- DOTs need to agree upon what end result properties they want to measure—“gold standard.”
- Soils and asphalt will need separate specifications.
- IC use for QA requires FHWA verification.
- What is the IC tool for the state agency?

Key Attributes of IC Specifications
- Descriptions of the rollers and configurations, GPS (accuracy), other position technology?
- Guidelines for roller operations (speed, vibration frequency, vibration amplitude, and track overlap) (normalization).
- Records to be reported: time of measurement, roller operations/mode, soil type, moisture content, layer thickness, etc.; electronic output, portable, how often?, real-time viewing?, anti-data manipulation; format, # passes; roller operator ID.
- Repeatability and reproducibility measurements for IC measurement values (IC-MVs).
- Ground conditions (smoothness, levelness, isolated soft/wet spots/high GWT, variation of materials).
- Calibration procedures for rollers and selection of calibration areas (variable soils), (independent site/mechanical, see superpave).
- Simple linear regression analysis (statistical analysis, populations?) between IC-MVs and point measurements (moisture content, stiffness).
- Number and location of quality control (QC—what testing for w%, DD?) and quality assurance (QA—what testing/independent) tests.
- Operator training and certification.
- Basis of payment/incentives.
• Acceptance procedures/corrective actions based on achievement of minimum MV-TVs (MV target values) and associated variability. (When—construction traffic, etc.?)(QA—if contractor data used needs to be verified).

Key Discussion Points

• Stiffness may be a good alternative to traditional density measurements.

• IC for HMA—primarily a QC tool.

• Need guidance on linking values to location/depths in fill.

• Using IC data should lead to better quality.

• Traditional methods rely heavily on the experience of the inspector.

• Need certification/calibration of roller and operator.

• Moisture content is critical.

• What electronic output file will be required?

• When will acceptance occur, especially on bigger project.

• How to define acceptance so IC requirements are realistic.

• Pavement roughness/FWD test protocols.

Next Steps

• Education—identify benefits.

• Technology transfer involving manufacturers, contractors, and state DOTs.

• High-quality DVD.

• Develop stand-alone tools/software for field inspectors.

• Develop consensus approach for specification.

From the discussion, three main points can be summarized, as shown in Table 5.

Table 5. Summary of Specification Needs

<table>
<thead>
<tr>
<th>Summary of Specification Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Different IC technologies exist and are evolving, so specifications should be technology independent.</td>
</tr>
<tr>
<td>2. Protocols for reporting, transfer, and evaluation of electronic data need to be developed.</td>
</tr>
<tr>
<td>3. QA measurement may need to move away from traditional density to mechanistic-based (e.g., strength, stiffness).</td>
</tr>
</tbody>
</table>
Panel Discussion

On day 3, a panel discussion was held for about 1½ hours and moderated by Tudor Van Hampton with ENR, Chicago Bureau. Panel members included Michael Adams (FHWA), Chris Connelly (Bomag America), Terry Rasmussen (Caterpillar), Zhiming Si (TxDOT), Brett Dening (NYSDOT), Bill Kramer (IDOT), Dean Herbst (Iowa DOT), Adam Ross (KYTC), Rebecca Embacher (Mn/DOT), Dick Endres (MDOT). The discussion was mainly centered on the following five key topics:

1. Action items (state DOT, manufacturer, and contractor perspectives).
2. Additional research/development needs for manufacturers.
3. Challenges.
4. Strategies (state DOT perspective).
5. Education/training.

Action Items (State DOT Perspective)

1. Need active involvement by state DOTs.
2. Need more demonstration projects to gain/improve confidence.
3. Need more research on correlations and develop specifications.
4. What QA point measurement should be used as a “gold standard”?
5. Use IC for QC by contractor and perform QA by DOT (use IC as a proof roller to select QA testing).
6. Need champions to overcome bureaucracy constraints.
7. Need upper management people at these workshops.
8. Need more contractor presence at these workshops (workshop timing is a constraint—late February is preferred).

Action Items (Manufacturer Perspective)

1. Need more communication with DOTs and contractors to educate and demonstrate the advantages.
2. Using IC for QC is a good starting point for DOTs.

Action Items (Contractor Perspective)

1. Need detailed specifications on how to implement the technology.
2. Specifications should include machine requirements (e.g., 3D capabilities, GPS, documentation, etc.).

Additional Research/Development Needs for Manufacturer

1. Incorporating the technology on padfoot and heavier machines.
2. Better understanding of the factors (e.g., temperature for asphalt, moisture content for soils) that affect the values to better refine the measurements and improve QC efficiency.
3. Need for effective data management by collaborative effort (e.g., Trimble connected community).

4. Display capabilities to filter inappropriate data (e.g., data collected in non-vibratory mode or reverse direction, etc.).

5. Simple analysis capabilities on display (e.g., % change with each pass, simple statistics).

6. Retrofitting capabilities on existing machines.

Challenges

1. Correlations to current practices/conventionally used measurement and evidence that the technology improves efficiency.

2. Providing machine requirements as part of specifications has not been done in current earthwork specifications.

3. Understanding impact of non-uniformity on performance—need specifications on how often (vertically in an embankment) measurements need to be collected.

4. Change of culture moving from 2D to 3D machine control.

5. Working capital new limitations for implementation.

6. Not enough documented evidence on the efficiency of the technology to convince contractors to use the technology.

7. Develop incentive-based specifications.

Strategies (State DOT Perspective)

1. Conduct demonstration projects and obtain measurements for correlations.

2. Compare current practices with new technology to demonstrate efficiency.

3. Develop draft specifications for implementation on pilot projects.

5. Obtain more information on cohesive soils.

6. Possibility of funding on FHWA?

7. Can ARAP money be used for implementation?
 a. Most projects are already let and specifications cannot be modified now.
 b. Contractor could use it QC.

Education/Training

1. Develop demonstration videos (e.g., McAninch Compaction 101 and GPS 101 videos).

2. FHWA pooled fund studies results are available on YouTube.

3. State DOTs need to develop training/education program.

4. Need for training/certification classes.

5. Use demonstration projects for training state DOTs and contractors.

6. Create a one-stop shop place for information on IC.
Some common themes arose from the panel discussion and were identified as key outcomes, as summarized in Table 6.

Table 6. Summary of panel discussion

<table>
<thead>
<tr>
<th>Key Outcomes from Panel Discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Need “champions” to create opportunities for implementation—using the technology for QC by contractor and perform independent QA by DOT is a good strategy to further implementation.</td>
</tr>
<tr>
<td>2. Need demonstration/pilot projects to improve confidence, create evidence that it reduces costs/improves efficiency to contractors, create training opportunities, and implement pilot specifications.</td>
</tr>
<tr>
<td>3. Need more research on identifying the “gold standard” QA method for correlations with IC measurements.</td>
</tr>
<tr>
<td>4. Need more refinement in the technologies with respect to more user-friendly onboard interfaces for data analysis and visualization and retrofitting capabilities.</td>
</tr>
</tbody>
</table>
Workshop Outcomes

Some of the key outcomes from this workshop were as follows:

1. Technical information exchange.
2. Prioritized lists of IC technology research, IC and AMG implementation needs, and a refined list of key attributes of IC specifications.
3. Establishment of a network of people interested in partnership and implementation of IC and AMG technologies and new QA/QC testing technologies into earthwork practice.
4. Plans for next year’s workshop to further technology exchange and explore opportunities for implementation, education/training programs, and technological advancements.
Next Steps

This workshop provided a platform to exchange ideas between researchers, practitioners, and policy makers and to provide input on the current state of the practice/technology. Some important outcomes from the breakout session and panel discussions were a prioritized IC road map and AMG road map with action items to move forward. Although these road maps are a good starting point, effective and accelerated implementation of these technologies will require “champions” to create opportunities.

The discussion that follows in Tables 7, 8, and 9 provide IC and AMG road maps and action items based on the information derived from the workshop session and the author’s viewpoint.

Table 7. Revised IC road map research and educational elements

<table>
<thead>
<tr>
<th>IC Road Map Research and Educational Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Intelligent Compaction Specifications/Guidance (4*). This research element will result in several specifications encompassing method, end result, performance-related, and performance-based options. This work should build on the work conducted by various state DOTs, NCHRP 21-09, and the ongoing FHWA IC Pooled Fund Study 954.</td>
</tr>
<tr>
<td>2. Intelligent Compaction and In Situ Correlations (2*). This research element will develop field investigation protocols for conducting detailed correlation studies between IC measurement values and various in situ testing techniques for earth materials and HMA. Standard protocols will ensure complete and reliable data collection and analysis. Machine operations (speed, frequency, vibration amplitude) and detailed measurements of ground conditions will be required for a wide range of conditions. A database and methods for establishing IC target values will be the outcome of this study. Information generated from this research element will contribute to research elements 1, 9, and 10.</td>
</tr>
<tr>
<td>3. In Situ Testing Advancements and New Mechanistic-Based QC/QA (8*). This research element will result in new in situ testing equipment and testing plans that target measurement of performance-related parameter values including strength and modulus. This approach lays the groundwork for better understanding the relationships between the characteristics of the geo-materials used in construction and the long-term performance of the system.</td>
</tr>
<tr>
<td>4. Understanding Impact of Non-Uniformity of Performance (10*). This track will investigate relationships between compaction non-uniformity and performance/service life of infrastructure systems, specifically pavement systems. Design of pavements is primarily based on average values, whereas failure conditions are affected by extreme values and spatial variations. The results of the research element should be linked to MEPDG input parameters. Much needs to be learned about spatial variability for earth materials and HMA and the impact on system performance. This element is cross cutting with research elements 1, 5, and 9.</td>
</tr>
<tr>
<td>5. Data Management and Analysis (9*). The data generated from IC compaction operations is 100+ times more than for traditional compaction QC/QA operations and presents new challenges. This research element should focus on data analysis, visualization, and management and be based on a statistically reliable framework that provides useful information to assist with construction process control. This research element is cross cutting with research elements 1, 2, 3, 6, 8, 9, and 10.</td>
</tr>
<tr>
<td>6. Project Scale Demonstration and Case Histories (3*). The product from this research element will be documented experiences and results from selected project-level case histories for a range of materials, site conditions, and locations across the United States. Input from</td>
</tr>
</tbody>
</table>
contractors and state agencies should further address implementation strategies and needed educational/technology transfer needs. Conclusive results with respect to benefits of IC technology should be reported and analyzed. Information from this research element will be integrated into research elements 1, 9, and 10.

7. **Understanding Roller Measurement Influence Depth (6*)**. Potential products of this research element include improved understanding of roller operations, roller selection, interpretation of roller measurement values, field compaction problem diagnostics, selection of in situ QA testing methods, and development of analytical models that relate to mechanistic performance parameter values. This element represents a major hurdle for linking IC measurement values to traditional in situ test measurements.

8. **Intelligent Compaction Technology Advancements and Innovations (7*)**. Potential outcomes of this research element include development of improved IC measurement systems, addition of new sensor systems such as moisture content and mat core temperature, new onboard data analysis and visualization tools, and integrated wireless data transfer and archival analysis. It is envisioned that much of this research will be incremental, and several sub-elements will need to be developed.

9. **Education Program/Certification Program (5*)**. This educational element will be the driver behind IC technology and specification implementation. Materials generated for this element should include a broadly accepted and integrated certification program than can be delivered through short courses and via the web for rapid training needs. Operator/inspector guidebooks and troubleshooting manuals should be developed. The educational programs need to provide clear and concise information to contractors and state DOT field personnel and engineers. A potential outcome of this element would be materials for NHI training courses.

10. **Intelligent Compaction Research Database (1*)**. This research element would define IC project database input parameters and generate web-based input protocols with a common format and data mining capabilities. This element creates the vehicle for state DOTs to input and share data and an archival element. In addition to data management/sharing, results should provide an option for assessing the effectiveness of project results. Over the long term, the database should be supplemented with pavement performance information. It is important for the contractor and state agencies to have standard guidelines and a single source for the most recent information. Information generated from this research element will contribute to research elements 1, 2, 6, and 9.

*2008 Workshop Ranking

Table 8. AMG road map research and educational elements

<table>
<thead>
<tr>
<th>AMG Road Map Research and Educational Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Demonstration Projects and Case Histories. The product from this research element will be documented experiences and results from pilot projects where AMG is implemented as part of the project specifications. The projects should include a wide range of material and site conditions across the United States (e.g., earthwork cut and fill, fine grading, paving, etc.). The project-level case histories should include interviews from contractors and field inspectors. Conclusive results with respect to the benefits of AMG implementation by comparing it with conventional methods and field experiences should be reported and analyzed.</td>
</tr>
<tr>
<td>2. Education/Certification/Training Program. This educational element is the key to accelerating the implementation of AMG technology. Materials generated for this element should include a broadly accepted and integrated certification program than can be delivered through short courses, future conferences, and via the web for rapid training needs. Operator/inspector guidebooks and troubleshooting manuals should be developed. The</td>
</tr>
</tbody>
</table>
 educational programs need to provide clear and concise information to contractors and state DOT field personnel and engineers. A potential outcome of this element would be materials for NHII training courses.

3. **AMG Specifications/Guidance on Tolerances/Requirements/Responsibilities.** This research element will result in widely accepted specifications inclusive of various AMG technologies (e.g., last GPS, total station, etc.), with guidelines on acceptable tolerances specific to construction elements (i.e., paving, fine grading, etc.). The specifications should clearly outline the achievable tolerances (utilizing information from element 1), requirements, and responsibilities (i.e., QC/QA testing and frequency, responsibility for the 3D model, schedule of design files’ availability to the contractor, etc.). This work should build on existing AASHTO and state DOT specifications.

4. **Standardization of File Type Formats and Data Transfer Protocols.** This is an important research element in successful implementation of the specifications and will be an important input to element 3. File compatibility and computer/software issues can lead to frustration with delays on construction sites. Standardization of the file formats and data transfer protocols as part of the specifications will significantly help overcome this obstacle. This element should be addressed as part of element 2.

Table 9. Action items for advancing IC road map and AMG road map

<table>
<thead>
<tr>
<th>Action Items for Advancing IC Road Map and AMG Road Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Develop six case histories (technical briefs) to demonstrate the benefits of the technologies</td>
</tr>
<tr>
<td>2. Conduct six webinars to facilitate training and technology transfer</td>
</tr>
<tr>
<td>3. Create a Specifications Technical Working Group to coordinate efforts</td>
</tr>
<tr>
<td>4. Regularly update the Earthworks Engineering Research Center web site (www.eerc.iastate.edu)</td>
</tr>
<tr>
<td>5. Explore the possibility of conducting a National Highway Institute course on IC and AMG technologies</td>
</tr>
<tr>
<td>6. Identify current research gaps, develop problem statements for needed research, and identify key research partners</td>
</tr>
</tbody>
</table>
Appendices

Appendix A: Workshop Agenda

Intelligent Construction for Earthworks
Sheraton Hotel, West Des Moines, Iowa
April 14–16, 2009

Sponsors: Iowa Department of Transportation and Iowa State University Earthworks Engineering Research Center (EERC)

Mission: This event provides an opportunity for participants to exchange ideas and experiences in using intelligent construction technologies. The goal is to increase participants’ knowledge and identify strategies to advance use of these tools to provide verifiable results that are appropriate for both contractor quality control and owner acceptance decisions.

Day 1—Tuesday, April 14, 2009

6:30 a.m. Breakfast and Registration

AM Moderator: Sandra Larson, P.E., Iowa DOT

8:00 Welcome and Workshop Mission—Sandra Larson

Why are we here?—John Adam, P.E., Iowa DOT

8:20 Review of Outcomes from 2008 Workshop—Dr. David White, Director, EERC, Iowa State University

9:00 Joint Rapid Airfield Construction (JRAC): U.S. Military’s New Approach to Contingency Airfield Construction—Dr. Gary Anderton, Chief, Airfields and Pavements Branch, U.S. Army Engineer Research and Development Center

10:00 Break

10:15 IC Case Histories for Soil, Aggregate, and HMA—Dr. David White, Dr. Pavana Vennapusa, Rachel Goldsmith, and Luke Johanson

11:15 Mn/DOT Experience with IWD and IC Implementation—Rebecca Embacher and Tim Andersen, Mn/DOT

12:00 p.m. Lunch (buffet)

PM Moderator: Lisa Rold, FHWA, Iowa Division

1:00 The Mars Exploration Rovers: Five Years of Exploring the Martian Surface—Dr. Rob Sullivan, Cornell University, NASA’s Mars Explorer Rover Project

2:30 Break

2:45 Statewide Iowa RTK-GPS—Mike Jackson, Iowa DOT

3:00 GPS Technology in Planning, Design and Construction Delivery—Prof Jeff Hannon, University of Southern Mississippi; GPS Automatic Grade Control Systems, Engineering Distance Education—Dr. Charles Jahren, Iowa State University; NCHRP 10-77—Dr. David White

3:25 New Approach for Asphalt IC—Dr. Sesh Commuri and Dr. Musharraf Zaman, University of Oklahoma
3:45 Participating State DOT Briefings (IA, MN, WA, LA, VA, GA, IL, WI, KY, KS, TX, MO, MS, MI, NY, SD)
4:45 Wrap-up, Review of Workshop Mission, Tomorrow’s Session—Sandra Larson

Day 2—Wednesday, April 15, 2009

6:30 Breakfast

AM Moderator: Tom Cackler, P.E., National Concrete Pavement Technology Center, ISU

7:30 Industry/Equipment Manufacturer Overviews

9:30 Break

9:45 Charge to the group—Tom Cackler

10:00 Session 1 – Break out discussion groups (1 group on each topic)
 • Technical aspects of IC for soils, aggregate, and HMA (e.g. data format, measurement technology, software, etc.)
 • Implementation aspects (e.g., design tools, education/training, case histories)
 • Review of developmental specification and performance-based specifications

12:00 Lunch (buffet)—Geo-Mobile Lab and FWD Lab Tours in South Parking Lot

1:00 Session 1 continues

1:45 Break

2:15 Session 2—Breakout discussion groups (1 group on each topic)
 • Technical aspects of IC for soils, aggregate, and HMA (e.g. data format, measurement technology, software, etc.)
 • Implementation aspects (e.g., design tools, education/training, case histories)
 • Review of developmental specification and performance-based specifications

4:45 Adjourn

Day 3—Thursday, April 16, 2009

6:30 Breakfast

Moderator: Tudor Van Hampton, Associate Editor, Engineering News-Record (ENR)

7:30 Summary of Facilitators’ Reports from Day 2 Discussions

9:00 Break

9:30 Panel Discussion and Questions—Tudor Van Hampton
 • State DOT representatives
 • Contractor representatives
 • Industry representatives

10:30 Audience Implementation Exercise

11:00 Wrap-up and Discussion of Next Steps—Sandra Larson

11:15 Workshop Evaluation

11:30 Adjourn
Appendix B: Workshop Attendees

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Adam</td>
<td>Iowa Department of Transportation</td>
<td>Ames, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John.Adam@dot.iowa.gov 515-239-1333</td>
</tr>
<tr>
<td>Mike Adams</td>
<td>Federal Highway Administration</td>
<td>McLean, VA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mike.Adams@fhwa.dot.gov 202-493-3025</td>
</tr>
<tr>
<td>Tim Andersen</td>
<td>Minnesota Department of Transportation</td>
<td>Maplewood, MN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tim.Andersen@dot.state.mn.us 651-366-5455</td>
</tr>
<tr>
<td>Gary Anderton</td>
<td>US Army Corp of Engineers</td>
<td>Vicksburg, MS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gary.L.Anderton@usace.army.mil 601-634-2955</td>
</tr>
<tr>
<td>Jason Billerbeck</td>
<td>Peterson Contractors, Inc.</td>
<td>Reinbeck, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>jbillerbeck@petersoncontractors.com 319-415-5229</td>
</tr>
<tr>
<td>Katherine Braddy</td>
<td>Caterpillar, Inc.</td>
<td>Peoria, IL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Braddy_Katherine_C@cat.com 309-578-7049</td>
</tr>
<tr>
<td>Mark Brenner</td>
<td>GOMACO Corp.</td>
<td>Ida Grove, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>markb@gomaco.com 712-364-3347</td>
</tr>
<tr>
<td>Tom Cackler</td>
<td>National Concrete Pavement Technology Center</td>
<td>Ames, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tcackler@iastate.edu 515-294-3230</td>
</tr>
<tr>
<td>Sesh Commuri</td>
<td>University of Oklahoma</td>
<td>Norman, OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>scommuri@ou.edu 405-325-4302</td>
</tr>
<tr>
<td>Chris Connolly</td>
<td>BOMAG Americas</td>
<td>Bowie, MD</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chris.Connolly@bomag.com 301-529-8477</td>
</tr>
<tr>
<td>Allen DeClerk</td>
<td>Caterpillar, Inc.</td>
<td>Peoria, IL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DeClerk_Allen_J@cat.com 309-578-3755</td>
</tr>
<tr>
<td>Brett Dening</td>
<td>New York Department of Transportation</td>
<td>Albany, NY</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDENING@dot.state.ny.us 518-457-4733</td>
</tr>
<tr>
<td>Dave Dennison</td>
<td>BOMAG Americas</td>
<td>Kewanee, IL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>dave.dennison@bomag.com 309-852-6217</td>
</tr>
<tr>
<td>Caleb Douglas</td>
<td>Earthworks Engineering Research Center</td>
<td>Ames, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>calebd@iastate.edu 515-294-7302</td>
</tr>
<tr>
<td>Don Drake</td>
<td>Iowa Department of Transportation</td>
<td>Ames, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>don.drake@dot.iowa.gov 515-233-7852</td>
</tr>
<tr>
<td>Mark Dunn</td>
<td>Iowa Department of Transportation</td>
<td>Ames, IA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mark.Dunn@dot.iowa.gov 515-239-1447</td>
</tr>
</tbody>
</table>
Rebecca Embacher
Minnesota Department of Transportation
Maplewood, MN
rebecca.embacher@dot.state.mn.us
651-366-5525

Dick Endres
Michigan Department of Transportation
Lansing, MI
Endresr@michigan.gov
517-322-1207

Ed Engle
Iowa Department of Transportation
Ames, IA
Edward.Engle@dot.iowa.gov
515-239-1382

Dave Erickson
Washington State Department of Transportation
Olympia, WA
ERICKSD@wsdot.wa.gov
360-705-7829

Bill Evans
Caterpillar, Inc.
Peoria, IL
Evans_William_C@cat.com
309-578-2783

Brad Fleming
Earthworks Engineering Research Center
Ames, IA
fleming@iastate.edu
515-294-7302

Hiroshi Furuya
Obayashi Corporation
Tokyo, Japan
furuya.hiroshi@obayashi.co.jp
81-3-5769-1322

Mike Gandrud
Sauer-Danfoss
Ames, IA
mgandrud@sauer-danfoss.com
515-239-6099

Stefano Ghielmetti
Trimble Navigation, Ltd.
Westminster, CO
stefano_ghielmetti@trimble.com
720-587-4602

Heath Gieselman
Earthworks Engineering Research Center
Ames, IA
giese@iastate.edu
515-294-7720

Rachel Goldsmith
Earthworks Engineering Research Center
Ames, IA
rmgold@iastate.edu
515-294-4015

Richard Handy
Iowa State University (Emeritus)
Madrid, IA
rlhandy@iowatelecom.net
515-795-3355

Khalil Hanifa
Louisiana Department of Transportation
Baton Rouge, LA
Khalil.Hanifa@LA.GOV
225-767-9127

John Hannon
University of Southern Mississippi
Hattiesburg, MS
john.hannon@usm.edu
601-266-5550

Gert Hansson
Dynapac USA, Inc.
Schertz, TX
gert.hansson@dynapac.com
210-889-7747

Dale Harrington
Snyder & Associates
Ankeny, IA
dharrington@snyder-associates.com
515-290-4014
Appendices

John Martin
Dynamic Force Solutions
West Linn, OR
john.martin@dynamicforce-solutions.com
503-730-7653

Dwayne McAninch
McAninch Corp.
West Des Moines, IA
dwayne@mcaninchcorp.com
515-267-2500

Steve Megivern
Iowa Department of Transportation
Ames, IA
Stephen.Megivern@dot.iowa.gov
515-239-1936

Kelly Miller
XYZ Solutions – Trimble
Alpharetta, GA
KMiller@xyzsolutions.com
770-772-3579

Wes Musgrove
Iowa Department of Transportation
Ames, IA
Wes.Musgrove@dot.iowa.gov
515-239-1542

Scott Nixon
Iowa Department of Transportation
Creston, IA
Scott.Nixon@dot.iowa.gov
641-782-4518

Josh Olson
Ziegler
Des Moines, IA
Joshua.olson@zieglercat.com
515-957-3910

Jason Omundson
Iowa Department of Transportation
Ames, IA
jason.omundson@dot.iowa.gov
515-239-1357

Ron Otto
Associated General Contractors of Iowa
Des Moines, IA
rotto@agcia.org
515-283-2424

Max Prokudin
Iowa State University
Ames, IA
max@iastate.edu
515-294-8103

Stan Rakowski
Sakai America, Inc.
Adairsville, GA
s-rakowski@sakaiamerica.com
717-437-5400

Terry Rasmussen
Caterpillar, Inc.
Peoria, IL
Rasmussen_Terry@cat.com
309-494-6321

Tom Reis
Iowa Department of Transportation
Ames, IA
Tom.Reis@dot.iowa.gov
515-239-1566

David Reynaud
National Cooperative Highway Research Program
Washington, DC
Dreynaud@nas.edu
202-334-3224

Lisa Rold
Federal Highway Administration – Iowa
Ames, IA
Lisa.Rold@fhwa.dot.gov
515-233-7307

Adam Ross
Kentucky Department of Transportation
Frankfort, KY
Adam.Ross@ky.gov
502-330-2101

Greg Schieber
Kansas Department of Transportation
Topeka, KS
GregS@ksdot.org
785-291-3866
Jeff Schmitt
Iowa Department of Transportation
Ames, IA
Jeffrey.Schmitt@dot.iowa.gov
515-239-1013

Dan Sheldon
Howard R. Green
Des Moines, IA
eldon@HRGreen.com
515-278-6117

Zhiming Si
Texas Department of Transportation
Austin, TX
zsi@dot.state.tx.us
512-506-5901

John Smythe
Iowa Department of Transportation
Ames, IA
John.Smythe@dot.iowa.gov
515-239-1503

Jeroen Snoeck
Trimble Navigation, Ltd.
Westminster, CO
Jeroen_Snoeck@Trimble.com
720-587-4414

Brett Stanton
Payne & Dolan, Inc.
Greenville, WI
BStanton@neasphalt.com
920-757-7575

Bob Steffes
National Concrete Pavement Technology Center
Ames, IA
stefesr@iastate.edu
515-294-7323

Larry Stevens
Statewide Urban Design and Specifications
Ames, IA
lstevens@iastate.edu
515-294-0419

Robert Sullivan
Cornell University
Ithaca, NY
rjs33@cornell.edu
607-255-9888

Jay Tople
South Dakota Department of Transportation
Pierre, SD
jay.tople@state.sd.us
605-773-3788

Yukinori Tsukimoto
Sakai Heavy Industries, Ltd.
Tokyo, Japan
y-nohse@sakainet.co.jp
81-3-3434-3401

Tudor Van Hampton
ENR Magazine
Chicago, IL
tudor_vanhampton@mcgraw-hill.com
312-233-7492

Pavanna Vennapusa
Earthworks Engineering Research Center
Ames, IA
pavanv@iastate.edu
515-294-7302

Dennis Ward
Iowa Department of Transportation
Jefferson, IA
Dennis.Ward@dot.iowa.gov
515-386-0302

John Wenzlick
Missouri Department of Transportation
Jefferson City, MO
john.wenzlick@modot.mo.gov
573-751-1039

David White
Earthworks Engineering Research Center
Ames, IA
djwhite@iastate.edu
515-294-1463
Scott White
Mississippi Department of Transportation
Waynesboro, MS
scwhite@mdot.state.ms.us
601-735-1122

Paul Wiegand
National Concrete Pavement Technology Center/Statewide Urban Design and Specifications
Ames, IA
pwiegand@iastate.edu
515-294-7082

Chris Williams
Iowa State University
Ames, IA
rwilliam@iastate.edu
515-294-4419

Musharraf Zaman
University of Oklahoma
Norman, OK
zaman@ou.edu
405-325-4236

Jiake Zhang
Earthworks Engineering Research Center
Ames, IA
zhjiake@iastate.edu
515-294-0693
Appendix C: Iowa DOT Developmental Specifications for GPS Machine Control Grading (DS-01119)

DEVELOPMENTAL SPECIFICATIONS
FOR
GLOBAL POSITIONING SYSTEM MACHINE CONTROL GRADING

Effective Date
November 18, 2008

THE STANDARD SPECIFICATIONS, SERIES 2001, ARE AMENDED BY THE FOLLOWING MODIFICATIONS AND ADDITIONS. THESE ARE DEVELOPMENTAL SPECIFICATIONS AND THEY SHALL PREVAIL OVER THOSE PUBLISHED IN THE STANDARD SPECIFICATIONS.

01119.01 GENERAL.
This specification contains requirements for grading construction utilizing Global Positioning System (GPS) machine control grading techniques and shall be used in conjunction with Section 2526, of the Standard Specifications.

The Contractor may utilize grading equipment controlled with a GPS machine control system in the construction of the roadway embankment.

The plans indicate the areas of the project where the Contracting Authority is providing electronic surface models of the roadway embankment construction. The remaining areas may be constructed with conventional construction survey techniques unless the Contractor chooses to build the required surface models to facilitate GPS machine control grading for those areas at no additional cost to the Contracting Authority.

The Contractor may use any type of GPS machine control equipment and systems that results in achieving the existing grading requirements. The Contractor shall convert the electronic data provided by the Contracting Authority into the format required by their system.

01119.02 EQUIPMENT.
All equipment required to accomplish GPS machine control grading shall be provided by the Contractor and shall be able to generate end results that meet the Standard Specifications.

01119.03 CONSTRUCTION.

A. Contracting Authority Responsibilities.

1. The Engineer will set the initial horizontal and vertical control points in the field for the project as indicated in the contract documents.

2. The Engineer will provide the project specific localized coordinate system. The control information utilized in establishing the localized coordinate system, specifically the rotation, scaling, and translation can be obtained from the Engineer upon request.
3. The Contracting Authority will provide the data listed below in an electronic format with the proposal form. This information is available for a fee at: http://www.iadb.org/main/index.html. The Contractor will be required to purchase an online account to obtain the electronic data.

No guarantee is made that the data systems used by the Engineer will be directly compatible with the systems used by the Contractor.

Article 1105.04 of the Standard Specifications shall apply with the additional clarification that information shown on the plans shall govern over the provided electronic data.

This information shall not be considered a representation of actual conditions to be encountered during construction. Furnishing this information does not relieve the Contractor from the responsibility of making an investigation of conditions to be encountered including, but not limited to site visits, and basing the bid on information obtained from these investigations, and the professional interpretations and judgment of the Contractor. The Contractor shall assume the risk of error if the information is used for any purposes for which the information was not intended.

Any assumptions the Contractor makes from this electronic information shall be at their risk. The Contracting Authority will develop and provide electronic data to the Contractor for review as part of the contract documents. The Contractor shall independently ensure that the electronic data will function in their machine control grading system.

The files that are provided were originally created with the computer software applications MicroStation (CADD software) and GEOPAK (civil engineering software). The data files shall be provided in the native formats and other software formats as described below. The Contractor shall perform necessary conversion of the files for their selected grade control equipment. The Contracting Authority will furnish make available to the Contractor with the following electronic data files:

a. CAD Files:
 - GEOPAK TIN files representing the design surfaces.
 - GEOPAK GPK file containing all horizontal and vertical alignment information.
 - GEOPAK documentation file describing all of the chains and profiles.
 - MicroStation primary design file.
 - MicroStation cross section files.
 - MicroStation ROW data file.
 - MicroStation photogrammetry and text files.

b. Machine Control Surface Model Files:
 - ASCII format.
 - LandXML format.
 - Trimble Terramodel format.

Note: TIN files and surface model files of the proposed finish grade include the topsoil placement where required in the plans.

c. Alignment Data Files:
 - ASCII format.
 - LandXML format.
 - Trimble Terramodel format.

4. The Engineer may perform spot checks of the Contractor’s machine control grading results, surveying calculations, records, field procedures, and actual staking. If the Engineer determines that the work is not being performed in a manner that will assure accurate results,
the Engineer may order the Contractor to redo such work, to the requirements of the contract documents, at no additional cost to the Contracting Authority.

B. Contractor's Responsibilities.

1. The Contractor shall provide the Engineer with a GPS rover for use during the duration of the contract. At the end of the contract, the GPS rover unit will be returned to the Contractor. This unit shall have the same capabilities as units utilized by the Contractor. The Contractor shall provide 8 hours of formal training on the Contractor's GPS machine control systems to the Engineer.

2. The Contractor shall review and apply the data provided by the Contracting Authority to perform GPS machine control grading.

3. The Contractor shall bear all costs, including but not limited to the cost of actual reconstruction of work, that may be incurred due to errors in application of GPS machine control grading techniques. Grade elevation errors and associated quantity adjustments resulting from the Contractor's activities shall be at no cost to the Contracting Authority.

4. The Contractor shall convert the electronic data provided by the Contracting Authority into a format compatible with their system.

5. The Contractor understands that any manipulation of the electronic data provided by the Contracting Authority shall be taken at their own risk.

6. The Contractor shall check and recalibrate, if necessary, their GPS machine control system at the beginning of each work day.

7. The Contractor shall meet the same accuracy requirements as conventional grading construction as detailed in the Standard Specifications.

8. The Contractor shall establish secondary control points at appropriate intervals and at locations along the length of the project and outside the project limits and/or where work is performed beyond the project limits as required at intervals not to exceed 1000 feet (300 m). The horizontal position of these points shall be determined by static GPS sessions or by traverse connection from the original baseline control points. The elevation of these control points shall be established using differential leveling from the project benchmarks, forming closed loops. A copy of all new control point information shall be provided to the Engineer prior to construction activities. The Contractor shall be responsible for all errors resulting from their efforts and shall correct deficiencies to the satisfaction of the Engineer and at no additional cost to the Contracting Authority.

9. The Contractor shall preserve all reference points and monuments that are established by the Engineer within the project limits. If the Contractor fails to preserve these items they shall be reestablished by the Contractor at no additional cost to the Contracting Authority.

10. The Contractor shall set hubs at the top of the finished subgrade at all hinge points on the cross section at 1000 feet (300 m) intervals on mainline and at least two cross sections on the side roads and ramps. These hubs shall be established using conventional survey methods for use by the Engineer to check the accuracy of the construction.

11. The Contractor shall provide controls points and conventional grade stakes at critical points such as, but not limited to, PCs, PTs, super elevation points, and other critical points required for the construction of drainage and roadway structures.
12. At least one week prior to the preconstruction conference, the Contractor shall submit to the Engineer for review a written machine control grading work plan which shall include the equipment type, control software manufacture and version, and the proposed location of the local GPS base station used for broadcasting differential correction data to rover units.

01119.04 METHOD OF MEASUREMENT.
The bid item for GPS Machine Control Grading will be measured and paid for at the lump sum contract price.

01119.05 BASIS OF PAYMENT.
The bid item for GPS Machine Control Grading will be paid for at the lump sum contract price. This payment shall be full compensation for all work associated with preparing the electronic data files for use in the Contractor’s machine control system, the required system check and needed recalibration, training for the Engineer, and all other items described in Article 01119.03, B of this Developmental Specification.

Delays due to satellite reception of signals to operate the GPS machine control system will not result in adjustment to the “Basis of Payment” for any construction items or be justification for granting contract extensions.
Appendix E: Workshop Evaluation Comments

Did the workshop meet your expectations?

- More than expected, I believe this needs to continue.
- Yes, far exceeded (3 responses); well-organized and facilitated; very good and helpful; very educational.
- Having no expectations to start, the workshop was extremely valuable in showing what is possible now and where we can realistically expect to go in the future.
- Yes, Day 1 was a little weak, many presentations.
- I was hoping to learn from other states on their IC experience.
- I was able to understand where we are.
- Yes, a lot of useful information. I still have a lot to digest at this time.
- Yes, I was pleasantly surprised by all the great content and speakers.
- As a first time attendee, Yes!!!
- Yes, but it was difficult to have expectations as this was my first.
- Mostly, for someone with little knowledge in IC it was not always clear if the goal was to learn more or jump forward and implement a technology that still needs development.

What was the most useful part of the workshop?

- Networking/Interaction between industry, education, IT, DOTs in general, & FHWA (7)
 - Meeting people who are dealing with this as well and what problems and solutions they have encountered.
 - Interaction with peers and an opportunity to learn new technologies.
- Technical Presentations (2)
- Industry/Mfg Presentations, general and detailed exposure to IC, JRAC and Mars presentations were great.
- The technical presentations were useful but seemed to build upon last years workshop. Since I did not attend last year, it took awhile to get up to speed.
- Hearing opinions and concerns from the DOTs (it really surprised me there is such a wide gap in the IC knowledge across the DOTs).
- Identifying issues.
- Working sessions (12) helped me see where various groups are at with their IC developments.
 - Working sessions continue creation of a network and tools to get this technology implemented.
- The barriers to implementation.
- Panel discussion (4).
• Specification workshop. (2)
• Summary of facilitators reports. (2)
• Discussion of QC-QA Process.
• Road map review, list of attendees, general discussion.
• Need to have things explained at the basic level. Most have limited knowledge. Basic grass roots level session is critical to get buy in.
• Dr. White's expertise in the subject area. Excellent teacher and has answered many questions.
• I was able to understand where we are.
• Case histories and state reports.
• Learning about a new tool that will be part of future construction.
• General information, knowledge gained.
• Information to take back to my state.

What was the least useful part of the workshop?

• Working sessions.
• Difficult question to answer. Narrow in on goals.
• Discussion needs more decision maker influence.
• State DOT briefings. (2)
• Hour long lunches, try to use working lunch format.
• Mars presentation, lots of fun and I enjoyed it but did not contribute substantially to the topic of IC. (5)
• Guest speakers were interesting but not very useful. (2)
• Presentations not useful in my field (unavoidable because of the diverse amount of people).
• Day 1 presentations.
• Some theoretical and mechanical analysis of IC test results.
• Some of the manufacturers' presentations seemed a little long. At the working sessions several of the points seemed to be brought up over and over and although the discussion was helpful sometimes, it would have been better to move on.
• Some of the spec writing process/aspects were repetitive.
• The lack of forward progress by individual DOTs, barriers of IC technology.

What suggestions would you make to improve the next workshop?

• More reports on demo projects or visit demo projects. (5)
• There was mention of comparisons between blind compaction and IC compaction, a
presentation on this would be interesting; more interesting presentations on cohesive soils, non-uniform soils.

- More hands on items manufactures having demos of their equipment even just a simulator would be great, videos of the pilot projects.
- Provide presentations on each step of the process ending with an overview or report on a demo project.
- Have separate breakout sessions for 1. State DOTs 2. Contractors 3. Equipment vendors 4. Software and then each group present their major concerns.
- NCHRP results of effort?
- Contractor participation. (4) The voice of the industry needs to be vocal.
- What is the military doing? How does immigration input current understanding of tech. advancement?
- February or early March meeting should involve more contractors. (2)
- Include designers, executive level management; cleaner vision of intelligent construction.
- Review what milestones from the first and second workshops have been completed.
- Suggest to presenters to provide some energy, some on the first day were hard to concentrate on.
- Focus on a few topics to narrow the scope; eliminate HMA and machine guidance.
- Some breakout on the first day; long first day for out of state folks.
- Include a portion summarizing findings from current and completed research, pooled fund studies, NCHRP, AASHTO, etc.; case histories from states who have tried IC projects and/or demo projects; it would be useful to have more contractors opinions.
- Have more facets of those involved represented from design to contractors to QA.
- More question and answer like working sessions but with the whole group.
- Another workshop would be very helpful. The networking/partnerships is needed and important.
- What was learned over the summer? Need to go over the 4 material properties and how they relate to each other (everybody needs basic training).
- If we can see how we advance these, especially action items, it would be good.
- I think it might be nice to divide one of the days (1st day) and technical forums into IC related to soils and IC related to HMA. IC can be used for both purposes, but IC for soils is so much further along than IC for HMA, so we kind of need to address that.
- Maybe more time for state DOT briefings. Would be good to have more technical presentations, perhaps an overview of a project in depth, i.e., start to finish, implementation, technologies tried, lessons learned.
- AV equipment needs help! Sound, microphones, pointers, etc.
• Compress info into 1½–2 days; maybe one overnight. (2)
• Technical presentations on machine values and correlations, equipment limitations.
• More technical in nature to highlight the research work.

Additional Comments

• Many thanks to all other organizers and contributors and Iowa DOT for financial contributions!

• Thank you for your time and effort put towards this workshop.

• Just continue.

• Appreciated the PF groups paying for this workshop and our ability to be here. If IC doesn't move forward over the next year, and I think it will take our contractors efforts to push it, I'm not sure Missouri DOT has much input to the process. We will disseminate the information through the DOT and see what happens. Thanks for the opportunity; you put on a first-class workshop.
Appendix F: Geotechnical Mobile Lab Brochure

A custom-built 44-foot trailer fully-equipped for conducting a comprehensive suite of state-of-the-art lab and in situ geomechanics tests.
Advancing Intelligent Construction

- Iowa State University's Geotechnical Mobile Lab helps researchers conduct projects indoors and outdoors.
- Lab supports research conducted through the Center for Transportation Research and Education (CERF) and the Department of Civil, Construction, and Environmental Engineering's Geotechnical Engineering Division.

Research Focus

- Geotechnical engineering focuses on soil mechanics, earth structures, foundations, and retaining structures. Iowa State University's geotechnical researchers define and prioritize geotechnical problems and develop applicable solutions that result in increased value through better life-cycle performance.

Benefits Being Sought

- Increased productivity and efficiency
- Reduced construction costs
- More responsible use of public investments
- Greater reliability
- Improved performance

Support/Tool Vehicle Details

- Freightliner M2 106
- Allison automatic transmission
- Mercedes-Benz 360-horsepower diesel engine
- Air-brake equipped
- Rear suspension
- Extended cab
- 16 ft steel fabbed with gooseneck ball hitch
- Side slide boxes for securely stowing field equipment
- 3,000 watts 12-VS/10k V AC inverter
- 50 gal water tank with electric demand pump
- 40 gal diesel fuel tank with pump
- Safety beacon
- Kawai 310 diesel mule ATV for on-site transportation and testing
- ATV ramps and tie-downs
- Plate load measurement frame mounted under truck frame
- Hydraulic tube sampling attachment

Lab Trailer Details

- 44 ft long all-aluminum, insulated trailer
- 36 ft x 6 ft 6 in. lab area, divided into three rooms
- 7 ft 6 in. interior height
- Gooseneck: 20 kw diesel electric generator on air suspension; 50 gal diesel fuel tank; 100 gal water tank
- Twin 10,000 lb capacity axles with air ride suspension
- Air brake system
- External front and rear-electric 110-volt and water connections
- 110-volt, 220-volt, and 12-volt electric systems
- Three roof heaters and air conditioners
- Two large exhaust fans
- Two floor drains
- Four hydraulic leveling jacks
- Hot and cold water
- Stainless steel counter tops
- Rubberized floor coating
- Two large tool cabinets
- Twelve equipment tie-downs
- Conference/work area with 32 in. x 52 in. table and four chairs
- 46 in. x 18 in. steel area
- Satellite Internet
- Video presentation screen

Lab Equipment

- Pile 'Break' gyratory compactor
- Pile' Farm' soil compactor
- Endecotts EFL 2000 vertical sieve shaker
- Certified sieves for particle size analysis
- Huber 12-gallon mixer
- Humbolt rapid soil grinder
- Chaise lounge table with variable load testing of cohesionless soils
- Two fisher ice creamers
- Refrigerator
- Microwave oven
- Geocomp LoadTrak with two FlowTrak II pumps and additional equipment for resilient modulus testing
- Triaxial and resilient modulus cell for 2.8 in. and 1 in. sample testing
- Triaxial and resilient modulus cell for 1 in. sample testing consolidation cell (1.5 in.)
- HP laptop computer
- Sullivans 380 300-psi compressor
- Ohaus PRO Series balance (100,000 g and 32,000.0 g)
- Hydrometer set
- Layout and plasticIrish testing equipment
- Dovis Vantage-Pro weather station with Weatherlink web server
- Fully equipped with tools and laboratory sample preparation equipment

Field Equipment

- Kessler dynamic cone penetrometer
- Plate load testing equipment
- Panasonic Toughbook
- Analytical Spectral Devices Agrospec portable near-infrared spectrometer
- Lightweight falling weight deflectometer
- Humbolt nuclear density gauge
- Clegg hammer
- TRD testing equipment
- Trimble GPS system model 871 and 878
- Humbolt Geogauge

Vision for the Lab

- Geotechnical construction projects will be built with specifications and processes that allow maximum efficiency and creativity on the part of the contractor, use acceptance criteria that ensure responsibility of public funds, and maximize value by increasing the performance life of structures.

Objectives for the Lab

- Better understand the engineering properties of soils that relate to performance in highway construction and have a high degree of reliability for agencies and contractors.
- Improve earthwork construction quality and efficiency through the use of current and emerging construction equipment and intelligent construction technologies.